Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Congenital disorders caused by aberrations in the biosynthesis of chondroitin/dermatan sulfate

Abstract

Chondroitin sulfate (CS)/dermatan sulfate (DS) proteoglycans that play indispensable roles in multiple physiological processes, including cell proliferation, cell adhesion, development, neuronal guidance, and cartilage formation. Depletion of CS/DS caused by biosynthetic enzyme loss of function impairs these processes and results in embryonic lethality. However, some individuals with mutant enzymes survive and exhibit severe phenotypes. These rare hereditary diseases have been discovered and characterized in recent decades because of marked advances in next-generation sequencing technology. In this review, CS/DS-related inherited diseases caused by aberrations in both CS/DS backbone synthesis, as well as their sulfation and/or epimerization, are comprehensively summarized and their pathogenesis discussed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CS/DS biosynthesis.
Fig. 2: Non-enzymatic roles of FAM20C in fine-tuning of CS sulfation balance and Raine syndrome etiology.
Fig. 3: Schematic of collagen fibrils and decorin-proteoglycan with CS/DS side chains.

Similar content being viewed by others

References

  1. Couchman JR. Transmembrane signaling proteoglycans. Annu Rev Cell Dev Biol. 2010;26:89–114.

    Article  CAS  PubMed  Google Scholar 

  2. Kim SH, Turnbull J, Guimond S. Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan, and growth factor receptors. J Endocrinol. 2011;209:139–51.

    Article  CAS  PubMed  Google Scholar 

  3. Mizumoto S, Yamada S, Sugahara K. Molecular interactions between chondroitin-dermatan sulfate and growth factors/receptors/matrix proteins. Curr Opin Struct Biol. 2015;34:35–42.

    Article  CAS  PubMed  Google Scholar 

  4. Hayashida K, Aquino RS, Park PW. Coreceptor functions of cell surface heparan sulfate proteoglycans. Am J Physiol Cell Physiol. 2022;322:C896–C912.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mitsou I, Multhaupt HAB, Couchman JR. Proteoglycans, ion channels and cell-matrix adhesion. Biochem J. 2017;474:1965–79.

    Article  CAS  PubMed  Google Scholar 

  6. Gómez Toledo A, Sorrentino JT, Sandoval DR, Malmström J, Lewis NE, Esko JD. A Systems View of the Heparan Sulfate Interactome. J Histochem Cytochem. 2021;69:105–19.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mizumoto S, Ikegawa S, Sugahara K. Human genetic disorders caused by mutations in genes encoding biosynthetic enzymes for sulfated glycosaminoglycans. J Biol Chem. 2013;288:10953–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mizumoto S, Yamada S, Sugahara K. Mutations in biosynthetic enzymes for the protein linker region of chondroitin/dermatan/heparan sulfate cause skeletal and skin dysplasias. Biomed Res Int. 2015;2015:861752.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Mizumoto S, Yamada S. Congenital disorders of deficiency in glycosaminoglycan biosynthesis. Front Genet. 2021;12:717535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Xie C, Schaefer L, Iozzo RV. Global impact of proteoglycan science on human diseases. iScience. 2023;26:108095.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kobayashi H. Recent trends in mucopolysaccharidosis research. J Hum Genet. 2019;64:127–37.

    Article  CAS  PubMed  Google Scholar 

  12. Howie AH, Tingley K, Inbar-Feigenberg M, Mitchell JJ, Angel K, Gentle J, et al. INFORM RARE Network. Review of clinical trials and guidelines for children and youth with mucopolysaccharidosis: outcome selection and measurement. Orphanet J Rare Dis. 2024;19:393.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Mikami T, Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta. 2013;1830:4719–33.

    Article  CAS  PubMed  Google Scholar 

  14. Sugahara K, Kitagawa H. Heparin and heparan sulfate biosynthesis. IUBMB Life. 2002;54:163–75.

    Article  CAS  PubMed  Google Scholar 

  15. Koike T, Izumikawa T, Tamura J, Kitagawa H. FAM20B is a kinase that phosphorylates xylose in the glycosaminoglycan-protein linkage region. Biochem J. 2009;421:157–62.

    Article  CAS  PubMed  Google Scholar 

  16. Tone Y, Pedersen LC, Yamamoto T, Izumikawa T, Kitagawa H, Nishihara J, et al. 2-O-phosphorylation of xylose and 6-O-sulfation of galactose in the protein linkage region of glycosaminoglycans influence the glucuronyltransferase-I activity involved in the linkage region synthesis. J Biol Chem. 2008;283:16801–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wen J, Xiao J, Rahdar M, Choudhury BP, Cui J, Taylor GS, et al. Xylose phosphorylation functions as a molecular switch to regulate proteoglycan biosynthesis. Proc Natl Acad Sci USA. 2014;111:15723–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Izumikawa T, Sato B, Mikami T, Tamura J, Igarashi M, Kitagawa H. GlcUAβ1-3Gal β1-3Gal β1-4Xyl(2-O-phosphate) is the preferred substrate for chondroitin N-acetylgalactosaminyltransferase-1. J Biol Chem. 2015;290:5438–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Koike T, Izumikawa T, Sato B, Kitagawa H. Identification of phosphatase that dephosphorylates xylose in the glycosaminoglycan-protein linkage region of proteoglycans. J Biol Chem. 2014;289:6695–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Koike T, Mikami T, Tamura JI, Kitagawa H. Altered sulfation status of FAM20C-dependent chondroitin sulfate is associated with osteosclerotic bone dysplasia. Nat Commun. 2022;13:7952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Malmström A, Bartolini B, Thelin MA, Pacheco B, Maccarana M. Iduronic acid in chondroitin/dermatan sulfate: biosynthesis and biological function. J Histochem Cytochem. 2012;60:916–25.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Malmström A. Biosynthesis of dermatan sulfate. II. Substrate specificity of the C-5 uronosyl epimerase. J Biol Chem. 1984;259:161–5.

    Article  PubMed  Google Scholar 

  23. Nakajima M, Mizumoto S, Miyake N, Kogawa R, Iida A, Ito H, et al. Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am J Hum Genet. 2013;92:927–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bui C, Huber C, Tuysuz B, Alanay Y, Bole-Feysot C, Leroy JG, et al. XYLT1 mutations in Desbuquois dysplasia type 2. Am J Hum Genet. 2014;94:405–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Munns CF, Fahiminiya S, Poudel N, Munteanu MC, Majewski J, Sillence DO, et al. Homozygosity for frameshift mutations in XYLT2 result in a spondylo-ocular syndrome with bone fragility, cataracts, and hearing defects. Am J Hum Genet. 2015;96:971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jamsheer A, Olech EM, Kozłowski K, Niedziela M, Sowińska-Seidler A, Obara-Moszyńska M, et al. Exome sequencing reveals two novel compound heterozygous XYLT1 mutations in a Polish patient with Desbuquois dysplasia type 2 and growth hormone deficiency. J Hum Genet. 2016;61:577–83.

    Article  CAS  PubMed  Google Scholar 

  27. Taylan F, Costantini A, Coles N, Pekkinen M, Héon E, Şıklar Z, et al. Spondyloocular Syndrome: Novel Mutations in XYLT2 Gene and Expansion of the Phenotypic Spectrum. J Bone Miner Res. 2016;31:1577–85.

    Article  CAS  PubMed  Google Scholar 

  28. Silveira C, Leal GF, Cavalcanti DP. Desbuquois dysplasia type II in a patient with a homozygous mutation in XYLT1 and new unusual findings. Am J Med Genet A. 2016;170:3043–47.

    Article  CAS  PubMed  Google Scholar 

  29. Al-Jezawi NK, Ali BR, Al-Gazali L. Endoplasmic reticulum retention of xylosyltransferase 1 (XYLT1) mutants underlying Desbuquois dysplasia type II. Am J Med Genet A. 2017;173:1773–81.

    Article  CAS  PubMed  Google Scholar 

  30. Taylan F, Yavaş Abalı Z, Jäntti N, Güneş N, Darendeliler F, Baş F, et al. Two novel mutations in XYLT2 cause spondyloocular syndrome. Am J Med Genet A. 2017;173:3195–200.

    Article  CAS  PubMed  Google Scholar 

  31. Umair M, Eckstein G, Rudolph G, Strom T, Graf E, Hendig D, et al. Homozygous XYLT2 variants as a cause of spondyloocular syndrome. Clin Genet. 2018;93:913–8.

    Article  CAS  PubMed  Google Scholar 

  32. LaCroix AJ, Stabley D, Sahraoui R, Adam MP, Mehaffey M, Kernan K, et al. University of Washington Center for Mendelian Genomics; Mefford HC, Sol-Church K. GGC Repeat Expansion and Exon 1 Methylation of XYLT1 Is a Common Pathogenic Variant in Baratela-Scott Syndrome. Am J Hum Genet. 2019;104:35–44.

    Article  CAS  PubMed  Google Scholar 

  33. Kausar M, Chew EGY, Ullah H, Anees M, Khor CC, Foo JN, et al. A novel homozygous frameshift variant in XYLT2 causes spondyloocular syndrome in a consanguineous Pakistani family. Front Genet. 2019;10:144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Götting C, Kuhn J, Kleesiek K. Human xylosyltransferases in health and disease. Cell Mol Life Sci. 2007;64:1498–517.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ritelli M, Chiarelli N, Zoppi N, Dordoni C, Quinzani S, Traversa M, et al. Insights in the etiopathology of galactosyltransferase II (GalT-II) deficiency from transcriptome-wide expression profiling of skin fibroblasts of two sisters with compound heterozygosity for two novel B3GALT6 mutations. Mol Genet Metab Rep. 2014;2:1–15.

    PubMed  PubMed Central  Google Scholar 

  36. Vorster AA, Beighton P, Ramesar RS. Spondyloepimetaphyseal dysplasia with joint laxity (Beighton type); mutation analysis in eight affected South African families. Clin Genet. 2015;87:492–5.

    Article  CAS  PubMed  Google Scholar 

  37. Salter CG, Davies JH, Moon RJ, Fairhurst J, Bunyan D, DDD Study, Foulds N. Further defining the phenotypic spectrum of B4GALT7 mutations. Am J Med Genet A. 2016;170:1556–63.

  38. Ben-Mahmoud A, Ben-Salem S, Al-Sorkhy M, John A, Ali BR, Al-Gazali L. A B3GALT6 variant in patient originally described as Al-Gazali syndrome and implicating the endoplasmic reticulum quality control in the mechanism of some beta3GalT6-pathy mutations. Clin Genet. 2018;93:1148–58.

    Article  CAS  PubMed  Google Scholar 

  39. Mihalic Mosher T, Zygmunt DA, Koboldt DC, Kelly BJ, Johnson LR, McKenna DS, et al. Expansion of B4GALT7 linkeropathy phenotype to include perinatal lethal skeletal dysplasia. Eur J Hum Genet. 2019;27:1569–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Caraffi SG, Maini I, Ivanovski I, Pollazzon M, Giangiobbe S, Valli M, et al. Severe peripheral joint laxity is a distinctive clinical feature of spondylodysplastic-Ehlers-Danlos syndrome (EDS)-B4GALT7 and spondylodysplastic-EDS-B3GALT6. Genes. 2019;10:799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lorenz D, Kress W, Zaum AK, Speer CP, Hebestreit H. Report of two siblings with spondylodysplastic Ehlers-Danlos syndrome and B4GALT7 deficiency. BMC Pediatr. 2021;21:293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Leoni C, Tedesco M, Radio FC, Chillemi G, Leone A, Bruselles A, et al. Broadening the phenotypic spectrum of Beta3GalT6-associated phenotypes. Am J Med Genet A. 2021;185:3153–60.

    Article  CAS  PubMed  Google Scholar 

  43. Shen F, Yang Y, Zheng Y, Tu M, Zhao L, Luo Z, et al. Mutant B3GALT6 in a multiplex family: A dominant variant co-segregated with moderate malformations. Front Genet. 2022;13:824445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Coetzer KC, Dieckerhoff J, Wollnik B, Moosa S. B3GALT6-linkeropathy: Three illustrative patients spanning the disease spectrum. Eur J Med Genet. 2023;66:104829.

    Article  CAS  PubMed  Google Scholar 

  45. Alessandri JL, Celse T, Spodenkiewicz M, Calaya A, Dumont C, Jacquemont ML, et al. Prenatal and neonatal phenotype of Larsen of La Reunion Island syndrome (B4GALT7-linkeropathy). Eur J Med Genet. 2024;69:104940.

    Article  CAS  PubMed  Google Scholar 

  46. Delbaere S, De Clercq A, Mizumoto S, Noborn F, Bek JW, Alluyn L, et al. b3galt6 knock-out zebrafish recapitulate β3GalT6-deficiency disorders in human and reveal a trisaccharide proteoglycan linkage region. Front Cell Dev Biol. 2020;8:597857.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Persson A, Nilsson J, Vorontsov E, Noborn F, Larson G. Identification of a non-canonical chondroitin sulfate linkage region trisaccharide. Glycobiology. 2019;29:366–71.

    Article  CAS  PubMed  Google Scholar 

  48. Izumikawa T, Kanagawa N, Watamoto Y, Okada M, Saeki M, Sakano M, et al. Impairment of embryonic cell division and glycosaminoglycan biosynthesis in glucuronyltransferase-I-deficient mice. J Biol Chem. 2010;285:12190–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Baasanjav S, Al-Gazali L, Hashiguchi T, Mizumoto S, Fischer B, Horn D, et al. Faulty initiation of proteoglycan synthesis causes cardiac and joint defects. Am J Hum Genet. 2011;89:15–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. von Oettingen JE, Tan WH, Dauber A. Skeletal dysplasia, global developmental delay, and multiple congenital anomalies in a 5-year-old boy-report of the second family with B3GAT3 mutation and expansion of the phenotype. Am J Med Genet A. 2014;164A:1580–6.

    Article  Google Scholar 

  51. Jones KL, Schwarze U, Adam MP, Byers PH, Mefford HC. A homozygous B3GAT3 mutation causes a severe syndrome with multiple fractures, expanding the phenotype of linkeropathy syndromes. Am J Med Genet A. 2015;167A:2691–6.

    Article  PubMed  Google Scholar 

  52. Budde BS, Mizumoto S, Kogawa R, Becker C, Altmüller J, Thiele H, et al. Skeletal dysplasia in a consanguineous clan from the island of Nias/Indonesia is caused by a novel mutation in B3GAT3. Hum Genet. 2015;134:691–704.

    Article  CAS  PubMed  Google Scholar 

  53. Job F, Mizumoto S, Smith L, Couser N, Brazil A, Saal H, et al. Functional validation of novel compound heterozygous variants in B3GAT3 resulting in severe osteopenia and fractures: expanding the disease phenotype. BMC Med Genet. 2016;17:86.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yauy K, Tran Mau-Them F, Willems M, Coubes C, Blanchet P, Herlin C, et al. B3GAT3-related disorder with craniosynostosis and bone fragility due to a unique mutation. Genet Med. 2018;20:269–74.

    Article  CAS  PubMed  Google Scholar 

  55. Lin X, Wei G, Shi Z, Dryer L, Esko JD, Wells DE, et al. Disruption of gastrulation and heparan sulfate biosynthesis in EXT1-deficient mice. Dev Biol. 2000;224:299–311.

    Article  CAS  PubMed  Google Scholar 

  56. Takahashi I, Noguchi N, Nata K, Yamada S, Kaneiwa T, Mizumoto S, et al. Important role of heparan sulfate in postnatal islet growth and insulin secretion. Biochem Biophys Res Commun. 2009;383:113–8.

    Article  CAS  PubMed  Google Scholar 

  57. Shimbo M, Suzuki R, Fuseya S, Sato T, Kiyohara K, Hagiwara K, et al. Postnatal lethality and chondrodysplasia in mice lacking both chondroitin sulfate N-acetylgalactosaminyltransferase-1 and -2. PLoS One. 2017;12:e0190333.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Hwang HY, Olson SK, Esko JD, Horvitz HR. Caenorhabditis elegans early embryogenesis and vulval morphogenesis require chondroitin biosynthesis. Nature. 2003;423:439–43.

    Article  CAS  PubMed  Google Scholar 

  59. Mizuguchi S, Uyama T, Kitagawa H, Nomura KH, Dejima K, Gengyo-Ando K, et al. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature. 2003;423:443–8.

    Article  CAS  PubMed  Google Scholar 

  60. Vodopiutz J, Mizumoto S, Lausch E, Rossi A, Unger S, Janocha N, et al. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 (CSGalNAcT-1) deficiency results in a mild skeletal dysplasia and joint laxity. Hum Mutat. 2017;38:34–8.

    Article  CAS  PubMed  Google Scholar 

  61. Mizumoto S, Janecke AR, Sadeghpour A, Povysil G, McDonald MT, Unger S, et al. CSGALNACT1-congenital disorder of glycosylation: A mild skeletal dysplasia with advanced bone age. Hum Mutat. 2020;41:655–67.

    Article  CAS  PubMed  Google Scholar 

  62. Watanabe Y, Takeuchi K, Higa Onaga S, Sato M, Tsujita M, Abe M, et al. Chondroitin sulfate N-acetylgalactosaminyltransferase-1 is required for normal cartilage development. Biochem J. 2010;432:47–55.

    Article  CAS  PubMed  Google Scholar 

  63. Sato T, Kudo T, Ikehara Y, Ogawa H, Hirano T, Kiyohara K, et al. Chondroitin sulfate N-acetylgalactosaminyltransferase 1 is necessary for normal endochondral ossification and aggrecan metabolism. J Biol Chem. 2011;286:5803–12.

    Article  CAS  PubMed  Google Scholar 

  64. Ida-Yonemochi H, Morita W, Sugiura N, Kawakami R, Morioka Y, Takeuchi Y, et al. Craniofacial abnormality with skeletal dysplasia in mice lacking chondroitin sulfate N-acetylgalactosaminyltransferase-1. Sci Rep. 2018;8:17134.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fawcett JW, Fyhn M, Jendelova P, Kwok JCF, Ruzicka J, Sorg BA. The extracellular matrix and perineuronal nets in memory. Mol Psychiatry. 2022;27:3192–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Yoshioka N, Miyata S, Tamada A, Watanabe Y, Kawasaki A, Kitagawa H, et al. Abnormalities in perineuronal nets and behavior in mice lacking CSGalNAcT1, a key enzyme in chondroitin sulfate synthesis. Mol Brain. 2017;10:47.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li Y, Laue K, Temtamy S, Aglan M, Kotan LD, Yigit G, et al. Temtamy preaxial brachydactyly syndrome is caused by loss-of-function mutations in chondroitin synthase 1, a potential target of BMP signaling. Am J Hum Genet. 2010;87:757–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Tian J, Ling L, Shboul M, Lee H, O’Connor B, Merriman B, et al. Loss of CHSY1, a secreted FRINGE enzyme, causes syndromic brachydactyly in humans via increased NOTCH signaling. Am J Hum Genet. 2010;87:768–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Li L, Krantz ID, Deng Y, Genin A, Banta AB, Collins CC, et al. Alagille syndrome is caused by mutations in human Jagged1, which encodes a ligand for Notch1. Nat Genet. 1997;16:243–51.

    Article  CAS  PubMed  Google Scholar 

  70. Le Pennec J, Makshakova O, Nevola P, Fouladkar F, Gout E, Machillot P, et al. Glycosaminoglycans exhibit distinct interactions and signaling with BMP2 according to their nature and localization. Carbohydr Polym. 2024;341:122294.

    Article  PubMed  Google Scholar 

  71. Klüppel M, Wight TN, Chan C, Hinek A, Wrana JL. Maintenance of chondroitin sulfation balance by chondroitin-4-sulfotransferase 1 is required for chondrocyte development and growth factor signaling during cartilage morphogenesis. Development. 2005;132:3989–4003.

    Article  PubMed  Google Scholar 

  72. Dathe K, Kjaer KW, Brehm A, Meinecke P, Nürnberg P, Neto JC, et al. Duplications involving a conserved regulatory element downstream of BMP2 are associated with brachydactyly type A2. Am J Hum Genet. 2009;84:483–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tan TY, Gonzaga-Jauregui C, Bhoj EJ, Strauss KA, Brigatti K, Puffenberger E, et al. Monoallelic BMP2 Variants Predicted to Result in Haploinsufficiency Cause Craniofacial, Skeletal, and Cardiac Features Overlapping Those of 20p12 Deletions. Am J Hum Genet. 2017;101:985–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wilson DG, Phamluong K, Lin WY, Barck K, Carano RA, Diehl L, et al. Chondroitin sulfate synthase 1 (Chsy1) is required for bone development and digit patterning. Dev Biol. 2012;363:413–25.

    Article  CAS  PubMed  Google Scholar 

  75. Cortes M, Baria AT, Schwartz NB. Sulfation of chondroitin sulfate proteoglycans is necessary for proper Indian hedgehog signaling in the developing growth plate. Development. 2009;136:1697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Domowicz MS, Cortes M, Henry JG, Schwartz NB. Aggrecan modulation of growth plate morphogenesis. Dev Biol. 2009;329:242–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kan AE, Kozlowski K. New distinct lethal osteosclerotic bone dysplasia (Raine syndrome). Am J Med Genet. 1992;43:860–4.

    Article  CAS  PubMed  Google Scholar 

  78. Simpson MA, Hsu R, Keir LS, Hao J, Sivapalan G, Ernst LM, et al. Mutations in FAM20C are associated with lethal osteosclerotic bone dysplasia (Raine syndrome), highlighting a crucial molecule in bone development. Am J Hum Genet. 2007;81:906–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Simpson MA, Scheuerle A, Hurst J, Patton MA, Stewart H, Crosby AH. Mutations in FAM20C also identified in non-lethal osteosclerotic bone dysplasia. Clin Genet. 2009;75:271–6.

    Article  CAS  PubMed  Google Scholar 

  80. Nalbant D, Youn H, Nalbant SI, Sharma S, Cobos E, Beale EG, et al. FAM20: an evolutionarily conserved family of secreted proteins expressed in hematopoietic cells. BMC Genomics. 2005;6:11.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Hao J, Narayanan K, Muni T, Ramachandran A, George A. Dentin matrix protein 4, a novel secretory calcium-binding protein that modulates odontoblast differentiation. J Biol Chem. 2007;282:15357–65.

    Article  CAS  PubMed  Google Scholar 

  82. Tagliabracci VS, Engel JL, Wen J, Wiley SE, Worby CA, Kinch LN, et al. Secreted kinase phosphorylates extracellular proteins that regulate biomineralization. Science. 2012;336:1150–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ishikawa HO, Xu A, Ogura E, Manning G, Irvine KD. The Raine syndrome protein FAM20C is a Golgi kinase that phosphorylates bio-mineralization proteins. PLoS One. 2012;7:e42988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tagliabracci VS, Engel JL, Wiley SE, Xiao J, Gonzalez DJ, Nidumanda Appaiah H, et al. Dynamic regulation of FGF23 by Fam20C phosphorylation, GalNAc-T3 glycosylation, and furin proteolysis. Proc Natl Acad Sci USA. 2014;111:5520–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tagliabracci VS, Wiley SE, Guo X, Kinch LN, Durrant E, Wen J, et al. A single kinase generates the majority of the secreted phosphoproteome. Cell. 2015;161:1619–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Tagliabracci VS, Pinna LA, Dixon JE. Secreted protein kinases. Trends Biochem Sci. 2013;38:121–30.

    Article  CAS  PubMed  Google Scholar 

  87. Koike T, Mikami T, Shida M, Habuchi O, Kitagawa H. Chondroitin sulfate-E mediates estrogen-induced osteoanabolism. Sci Rep. 2015;5:8994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yin X, Cheng H, Lin Y, Fan X, Cui Y, Zhou F, et al. Five regulatory genes detected by matching signatures of eQTL and GWAS in psoriasis. J Dermatol Sci. 2014;76:139–42.

    Article  CAS  PubMed  Google Scholar 

  89. Kuroda Y, Murakami H, Enomoto Y, Tsurusaki Y, Takahashi K, Mitsuzuka K, et al. A novel gene (FAM20B encoding glycosaminoglycan xylosylkinase) for neonatal short limb dysplasia resembling Desbuquois dysplasia. Clin Genet. 2019;95:713–7.

    Article  CAS  PubMed  Google Scholar 

  90. Kitazawa K, Nadanaka S, Kadomatsu K, Kitagawa H. Chondroitin 6-sulfate represses keratinocyte proliferation in mouse skin, which is associated with psoriasis. Commun Biol. 2021;4:114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Malfait F, Francomano C, Byers P, Belmont J, Berglund B, Black J, et al. The 2017 international classification of the Ehlers-Danlos syndromes. Am J Med Genet C Semin Med Genet. 2017;175:8–26.

    Article  PubMed  Google Scholar 

  92. Malfait F, Castori M, Francomano CA, Giunta C, Kosho T, Byers PH. The Ehlers-Danlos syndromes. Nat Rev Dis Prim. 2020;6:64.

    Article  PubMed  Google Scholar 

  93. Müller T, Mizumoto S, Suresh I, Komatsu Y, Vodopiutz J, Dundar M, et al. Loss of dermatan sulfate epimerase (DSE) function results in musculocontractural Ehlers-Danlos syndrome. Hum Mol Genet. 2013;22:3761–72.

    Article  PubMed  Google Scholar 

  94. Dündar M, Müller T, Zhang Q, Pan J, Steinmann B, Vodopiutz J, et al. Loss of dermatan-4-sulfotransferase 1 function results in adducted thumb-clubfoot syndrome. Am J Hum Genet. 2009;85:873–82.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Miyake N, Kosho T, Mizumoto S, Furuichi T, Hatamochi A, Nagashima Y, et al. Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Hum Mutat. 2010;31:966–74.

    Article  CAS  PubMed  Google Scholar 

  96. Malfait F, Syx D, Vlummens P, Symoens S, Nampoothiri S, Hermanns-Lê T, et al. Musculocontractural Ehlers-Danlos Syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. Hum Mutat. 2010;31:1233–9.

    Article  CAS  PubMed  Google Scholar 

  97. Maccarana M, Olander B, Malmström J, Tiedemann K, Aebersold R, Lindahl U, et al. Biosynthesis of dermatan sulfate: chondroitin-glucuronate C5-epimerase is identical to SART2. J Biol Chem. 2006;281:11560–8.

    Article  CAS  PubMed  Google Scholar 

  98. Evers MR, Xia G, Kang HG, Schachner M, Baenziger JU. Molecular cloning and characterization of a dermatan-specific N-acetylgalactosamine 4-O-sulfotransferase. J Biol Chem. 2001;276:36344–53.

    Article  CAS  PubMed  Google Scholar 

  99. Mikami T, Mizumoto S, Kago N, Kitagawa H, Sugahara K. Specificities of three distinct human chondroitin/dermatan N-acetylgalactosamine 4-O-sulfotransferases demonstrated using partially desulfated dermatan sulfate as an acceptor: implication of differential roles in dermatan sulfate biosynthesis. J Biol Chem. 2003;278:36115–27.

    Article  CAS  PubMed  Google Scholar 

  100. Syx D, Van Damme T, Symoens S, Maiburg MC, van de Laar I, Morton J, et al. Genetic heterogeneity and clinical variability in musculocontractural Ehlers-Danlos syndrome caused by impaired dermatan sulfate biosynthesis. Hum Mutat. 2015;36:535–47.

    Article  CAS  PubMed  Google Scholar 

  101. Lautrup CK, Teik KW, Unzaki A, Mizumoto S, Syx D, Sin HH, et al. Delineation of musculocontractural Ehlers-Danlos Syndrome caused by dermatan sulfate epimerase deficiency. Mol Genet Genom Med. 2020;8:e1197.

    Article  CAS  Google Scholar 

  102. Maccarana M, Kalamajski S, Kongsgaard M, Magnusson SP, Oldberg A, Malmström A. Dermatan sulfate epimerase 1-deficient mice have reduced content and changed distribution of iduronic acids in dermatan sulfate and an altered collagen structure in skin. Mol Cell Biol. 2009;29:5517–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kosho T, Miyake N, Hatamochi A, Takahashi J, Kato H, Miyahara T, et al. A new Ehlers-Danlos syndrome with craniofacial characteristics, multiple congenital contractures, progressive joint and skin laxity, and multisystem fragility-related manifestations. Am J Med Genet A. 2010;152A:1333–46.

    Article  PubMed  Google Scholar 

  104. Shimizu K, Okamoto N, Miyake N, Taira K, Sato Y, Matsuda K, et al. Delineation of dermatan 4-O-sulfotransferase 1 deficient Ehlers-Danlos syndrome: observation of two additional patients and comprehensive review of 20 reported patients. Am J Med Genet A. 2011;155A:1949–58.

    Article  PubMed  Google Scholar 

  105. Janecke AR, Li B, Boehm M, Krabichler B, Rohrbach M, Müller T, et al. The phenotype of the musculocontractural type of Ehlers-Danlos syndrome due to CHST14 mutations. Am J Med Genet A. 2016;170A:103–15.

    Article  PubMed  Google Scholar 

  106. Uehara M, Kosho T, Yamamoto N, Takahashi HE, Shimakura T, Nakayama J, et al. Spinal manifestations in 12 patients with musculocontractural Ehlers-Danlos syndrome caused by CHST14/D4ST1 deficiency (mcEDS-CHST14). Am J Med Genet A. 2018;176:2331–41.

    Article  CAS  PubMed  Google Scholar 

  107. Minatogawa M, Unzaki A, Morisaki H, Syx D, Sonoda T, Janecke AR, et al. Clinical and molecular features of 66 patients with musculocontractural Ehlers-Danlos syndrome caused by pathogenic variants in CHST14 (mcEDS-CHST14). J Med Genet. 2022;59:865–77.

    Article  CAS  PubMed  Google Scholar 

  108. Hirose T, Takahashi N, Tangkawattana P, Minaguchi J, Mizumoto S, Yamada S, et al. Structural alteration of glycosaminoglycan side chains and spatial disorganization of collagen networks in the skin of patients with mcEDS-CHST14. Biochim Biophys Acta Gen Subj. 2019;1863:623–31.

    Article  CAS  PubMed  Google Scholar 

  109. Akyüz N, Rost S, Mehanna A, Bian S, Loers G, Oezen I, et al. Dermatan 4-O-sulfotransferase1 ablation accelerates peripheral nerve regeneration. Exp Neurol. 2013;247:517–30.

    Article  PubMed  Google Scholar 

  110. Yoshizawa T, Mizumoto S, Takahashi Y, Shimada S, Sugahara K, Nakayama J, et al. Vascular abnormalities in the placenta of Chst14-/- fetuses: implications in the pathophysiology of perinatal lethality of the murine model and vascular lesions in human CHST14/D4ST1 deficiency. Glycobiology. 2018;28:80–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Nitahara-Kasahara Y, Mizumoto S, Inoue YU, Saka S, Posadas-Herrera G, Nakamura-Takahashi A, et al. A new mouse model of Ehlers-Danlos syndrome generated using CRISPR/Cas9-mediated genomic editing. Dis Model Mech. 2021;14:dmm048963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Nitahara-Kasahara Y, Posadas-Herrera G, Mizumoto S, Nakamura-Takahashi A, Inoue YU, Inoue T, et al. Myopathy Associated With Dermatan Sulfate-Deficient Decorin and Myostatin in Musculocontractural Ehlers-Danlos Syndrome: A Mouse Model Investigation. Front Cell Dev Biol. 2021;9:695021.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Hirose T, Mizumoto S, Hashimoto A, Takahashi Y, Yoshizawa T, Nitahara-Kasahara Y, et al. Systematic investigation of the skin in Chst14-/- mice: A model for skin fragility in musculocontractural Ehlers-Danlos syndrome caused by CHST14 variants (mcEDS-CHST14). Glycobiology. 2021;31:137–50.

    Article  CAS  PubMed  Google Scholar 

  114. Kusche-Gullberg M, Kjellén L. Sulfotransferases in glycosaminoglycan biosynthesis. Curr Opin Struct Biol. 2003;13:605–11.

    Article  CAS  PubMed  Google Scholar 

  115. Thiele H, Sakano M, Kitagawa H, Sugahara K, Rajab A, Höhne W, et al. Loss of chondroitin 6-O-sulfotransferase-1 function results in severe human chondrodysplasia with progressive spinal involvement. Proc Natl Acad Sci USA. 2004;101:10155–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. van Roij MH, Mizumoto S, Yamada S, Morgan T, Tan-Sindhunata MB, Meijers-Heijboer H, et al. Spondyloepiphyseal dysplasia, Omani type: further definition of the phenotype. Am J Med Genet A. 2008;146A:2376–84.

    Article  PubMed  Google Scholar 

  117. Tuysuz B, Mizumoto S, Sugahara K, Celebi A, Mundlos S, Turkmen S. Omani-type spondyloepiphyseal dysplasia with cardiac involvement caused by a missense mutation in CHST3. Clin Genet. 2009;75:375–83.

    Article  CAS  PubMed  Google Scholar 

  118. Hermanns P, Unger S, Rossi A, Perez-Aytes A, Cortina H, Bonafé L, et al. Congenital joint dislocations caused by carbohydrate sulfotransferase 3 deficiency in recessive Larsen syndrome and humero-spinal dysostosis. Am J Hum Genet. 2008;82:1368–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Unger S, Lausch E, Rossi A, et al. Phenotypic features of carbohydrate sulfotransferase 3 (CHST3) deficiency in 24 patients: congenital dislocations and vertebral changes as principal diagnostic features. Am J Med Genet A. 2010;152A:2543–9.

    Article  CAS  PubMed  Google Scholar 

  120. Uchimura K, Kadomatsu K, Nishimura H, Muramatsu H, Nakamura E, Kurosawa N, et al. Functional analysis of the chondroitin 6-sulfotransferase gene in relation to lymphocyte subpopulations, brain development, and oversulfated chondroitin sulfates. J Biol Chem. 2002;277:1443–50.

    Article  CAS  PubMed  Google Scholar 

  121. Kitagawa H, Tsutsumi K, Tone Y, Sugahara K. Developmental regulation of the sulfation profile of chondroitin sulfate chains in the chicken embryo brain. J Biol Chem. 1997;272:31377–81.

    Article  CAS  PubMed  Google Scholar 

  122. Properzi F, Carulli D, Asher RA, Muir E, Camargo LM, van Kuppevelt TH, et al. Chondroitin 6-sulphate synthesis is up-regulated in injured CNS, induced by injury-related cytokines and enhanced in axon-growth inhibitory glia. Eur J Neurosci. 2005;21:378–90.

    Article  PubMed  Google Scholar 

  123. Mitsunaga C, Mikami T, Mizumoto S, Fukuda J, Sugahara K. Chondroitin sulfate/dermatan sulfate hybrid chains in the development of cerebellum. Spatiotemporal regulation of the expression of critical disulfated disaccharides by specific sulfotransferases. J Biol Chem. 2006;281:18942–52.

    Article  CAS  PubMed  Google Scholar 

  124. Miyata S, Komatsu Y, Yoshimura Y, Taya C, Kitagawa H. Persistent cortical plasticity by upregulation of chondroitin 6-sulfation. Nat Neurosci. 2012;15:414–22.

    Article  CAS  PubMed  Google Scholar 

  125. Chopra SS, Leshchiner I, Duzkale H, McLaughlin H, Giovanni M, Zhang C, et al. Inherited CHST11/MIR3922 deletion is associated with a novel recessive syndrome presenting with skeletal malformation and malignant lymphoproliferative disease. Mol Genet Genomic Med. 2015;3:413–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Shabbir RMK, Nalbant G, Ahmad N, Malik S, Tolun A. Homozygous CHST11 mutation in chondrodysplasia, brachydactyly, overriding digits, clino-symphalangism and synpolydactyly. J Med Genet. 2018;55:489–96.

    Article  CAS  PubMed  Google Scholar 

  127. Ohtake-Niimi S, Kondo S, Ito T, Kakehi S, Ohta T, Habuchi H, et al. Mice deficient in N-acetylgalactosamine 4-sulfate 6-o-sulfotransferase are unable to synthesize chondroitin/dermatan sulfate containing N-acetylgalactosamine 4,6-bissulfate residues and exhibit decreased protease activity in bone marrow-derived mast cells. J Biol Chem. 2010;285:20793–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Salpietro V, Ruggieri M, Mankad K, Di Rosa G, Granata F, Loddo I, et al. A de novo 0.63 Mb 6q25.1 deletion associated with growth failure, congenital heart defect, underdeveloped cerebellar vermis, abnormal cutaneous elasticity and joint laxity. Am J Med Genet A. 2015;167A:2042–51.

    Article  PubMed  Google Scholar 

  129. Goossens D, Van Gestel S, Claes S, De Rijk P, Souery D, Massat I, et al. A novel CpG-associated brain-expressed candidate gene for chromosome 18q-linked bipolar disorder. Mol Psychiatry. 2003;8:83–9.

    Article  CAS  PubMed  Google Scholar 

  130. Zayed H, Chao R, Moshrefi A, Lopezjimenez N, Delaney A, Chen J, et al. A maternally inherited chromosome 18q22.1 deletion in a male with late-presenting diaphragmatic hernia and microphthalmia-evaluation of DSEL as a candidate gene for the diaphragmatic defect. Am J Med Genet A. 2010;152A:916–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported in part by a Grant-in-Aid for Scientific Research (C) 23K06142 (to SM), 24K09372 (to TM), and 24K09805 (to SY), and Scientific Research (B) 24K02183 (to HK) from the Japan Society for the Promotion of Science, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroshi Kitagawa or Shuhei Yamada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikami, T., Mizumoto, S., Kitagawa, H. et al. Congenital disorders caused by aberrations in the biosynthesis of chondroitin/dermatan sulfate. J Hum Genet (2025). https://doi.org/10.1038/s10038-025-01396-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s10038-025-01396-0

Search

Quick links