Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

De novo GNAS-Gsα variant (p.Thr55Ala) with constitutive gain-of-function effects on AVPR2 and PTH1R signalings

Abstract

Recent studies have revealed de novo or germline-derived GNAS-Gsα variants with constitutive ligand-independent gain-of-function (GOF) effects on specific G-protein-coupled receptor signalings in patients with nephrogenic syndrome of inappropriate antidiuresis (NSIAD), osteolytic bone disorder with metaphyseal dysplasia, and peripheral precocious puberty. We encountered a Japanese girl with NSIAD and osteolytic bone disorder with metaphyseal dysplasia. Whole genome sequencing identified a de novo ″likely pathogenic″ heterozygous GNAS-Gsα missense variant (NM_000516.7:c.163 A > G:p.(Thr55Ala)) which occurred on the paternally inherited allele. Luciferase assays for p.Thr55Ala showed ligand-independent GOF effects on AVPR2 and PTH1R signalings, and a ligand-dependent loss-of-function (LOF) effect on PTH1R signaling. Protein structural analysis for p.Thr55Ala indicated disruption of the hydrogen bond between p.Thr55 side chain and the α-phosphate group of the bound nucleotide in both GDP-bound inactive form and GTP-bound active form and resultantly reduced affinity of the variant-positive Gsα protein for both GDP and GTP, consistent with the ligand-independent GOF and ligand-dependent LOF effects. The results, in conjunction with the previous findings, indicate that GNAS-Gsα variants with constitutive GOF effects cause clinically distinctive congenital rare disorders including NSIAD and characteristic bone disorder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Weinstein LS, Yu S, Warner DR, Liu J. Endocrine manifestations of stimulatory G protein α-subunit mutations and the role of genomic imprinting. Endocr Rev. 2001;22:675–705.

    PubMed  CAS  Google Scholar 

  2. Turan S, Bastepe MTheGNAS. complex locus and human diseases associated with loss-of-function mutations or epimutations within this imprinted gene. Horm Res Paediatr. 2013;80:229–41.

    Article  PubMed  CAS  Google Scholar 

  3. Spiegel AM, Weinstein LS. Inherited diseases involving G proteins and G protein-coupled receptors. Annu Rev Med. 2004;55:27–39. 

    Article  PubMed  CAS  Google Scholar 

  4. Yu S, Yu D, Lee E, Eckhaus M, Lee R, Corria Z, et al. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsα) knockout mice is due to tissue-specific imprinting of the Gsα gene. Proc Natl Acad Sci USA. 1998;95:8715–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hayward BE, Barlier A, Korbonits M, Grossman AB, Jacquet P, Enjalbert A, et al. Imprinting of the Gsα gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest. 2001;107:R31-6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Mantovani G, Ballare E, Giammona E, Beck-Peccoz P, Spada A. The Gsα gene: predominant maternal origin of transcription in human thyroid gland and gonads. J Clin Endocrinol Metab. 2002;87:4736–40.

    Article  PubMed  CAS  Google Scholar 

  7. Elli FM, de Sanctis L, Ceoloni B, Barbieri AM, Bordogna P, Beck-Peccoz P, et al. Pseudohypoparathyroidism type Ia and pseudo-pseudohypoparathyroidism: the growing spectrum of GNAS inactivating mutations. Hum Mutat. 2013;34:411–6.

    Article  PubMed  CAS  Google Scholar 

  8. Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325:1688–95.

    Article  PubMed  CAS  Google Scholar 

  9. Miyado M, Fukami M, Takada S, Terao M, Nakabayashi K, Hata K, et al. Germline-derived gain-of-function variants of Gsα-coding GNAS gene identified in nephrogenic syndrome of inappropriate antidiuresis. J Am Soc Nephrol. 2019;30:877–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Biebermann H, Kleinau G, Schnabel D, Bockenhauer D, Wilson LC, Tully I, et al. A new multisystem disorder caused by the Gαs mutation p.F376V. J Clin Endocrinol Metab. 2019;104:1079–89.

    Article  PubMed  Google Scholar 

  11. Cavarzere P, Gastaldi A, Elli FM, Gaudino R, Peverelli E, Brugnara M, et al. A complex phenotype in a girl with a novel heterozygous missense variant (p.Ile56Phe) of the GNAS gene. Orphanet J Rare Dis. 2022;17:83.

    Article  PubMed  Google Scholar 

  12. Carcavilla A, Pereda A, Miyado M, Fukami M, Kato F, Sengoku T, et al. Germline-derived GNAS-Gsα variants associated with both gain-of-function and loss-of-function phenotypes. Eur J Endocrinol. 2025;192:364–72.

    Article  PubMed  CAS  Google Scholar 

  13. Iiri T, Herzmark P, Nakamoto JM, Van Dop C, Bourne HR. Rapid GDP release from Gsα in patients with gain and loss of endocrine function. Nature. 1997;371:164–8.

    Article  Google Scholar 

  14. Nakamoto JM, Zimmerman D, Jones EA, Loke KY, Siddiq K, Donlan MA, et al. Concurrent hormone resistance (pseudohypoparathyroidism type Ia) and hormone independence (testotoxicosis) caused by a unique mutation in the Gαs gene. Biochem Mol Med. 1996;58:18–24.

    Article  PubMed  CAS  Google Scholar 

  15. Wentworth K, Hsing A, Urrutia A, Zhu Y, Horvai AE, Bastepe M, et al. A novel T55A variant of Gsα associated with impaired cAMP production, bone fragility, and osteolysis. Case Rep Endocrinol. 2016;2016:2691385.

    PubMed  PubMed Central  Google Scholar 

  16. Resch B, Resch E, Maurer-Fellbaum U, Pichler-Stachl E, Riccabona M, Hofer N, et al. The whole spectrum of cystic periventricular leukomalacia of the preterm infant: results from a large consecutive case series. Childs Nerv Syst. 2015;31:1527–32.

    Article  PubMed  Google Scholar 

  17. Feldman BJ, Rosenthal SM, Vargas GA, Fenwick RG, Huang EA, Matsuda-Abedini M, et al. Nephrogenic syndrome of inappropriate antidiuresis. N Engl J Med. 2005;352:1884–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Liu X, Xu X, Hilger D, Aschauer P, Tiemann JKS, Du Y, et al. Structural insights into the process of GPCR-G protein complex formation. Cell. 2019;177:1243–51.e12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Dai SA, Hu Q, Gao R, Blythe EE, Touhara KK, Peacock H, et al. State-selective modulation of heterotrimeric Gsα signaling with macrocyclic peptides. Cell. 2022;185:3950–65.e1–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Pai EF, Kabsch W, Krengel U, Holmes KC, John J, Wittinghofer A. Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation. Nature. 1989;341:209–14.

    Article  PubMed  CAS  Google Scholar 

  22. Bockenhauer D, Bichet DG. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat Rev Nephrol. 2015;11:576–88.

    Article  PubMed  CAS  Google Scholar 

  23. Unger S, Ferreira CR, Mortier GR, Ali H, Bertola DR, Calder A, et al. Nosology of genetic skeletal disorders: 2023 revision. Am J Med Genet A. 2023;191:1164–209.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Obiezu F, Boyce A, Jüppner H, Jha S. PTH1R-related Jansen metaphyseal chondrodysplasia. In: Adam MP, Feldman J, Mirzaa GM, et al. editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2025Bookshelf ID: NBK6 16087.

  25. Bilezikian JP, Khan AA, Silverberg SJ, Fuleihan GE, Marcocci C, Minisola S, et al. Evaluation and management of primary hyperparathyroidism: summary statement and guidelines from the Fifth International Workshop. J Bone Miner Res. 2022;37:2293–314.

    Article  PubMed  Google Scholar 

  26. Gray MJ, van Kogelenberg M, Beddow R, Morgan T, Wordsworth P, Shears DJ, et al. A new acro-osteolysis syndrome caused by duplications including PTHLH. J Hum Genet. 2014;59:484–7.

    Article  PubMed  CAS  Google Scholar 

  27. Tacke CE, Terheggen-Lagro SWJ, Boot AM, Plomp AS, Polstra AM, van Rijn RR, et al. Chondrodysplasia, enchondromas and a chest deformity causing severe pulmonary morbidity in a boy with a PTHLH duplication: a case report. Bone Rep. 2021;14:101067.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Flock T, Hauser AS, Lund N, Gloriam DE, Balaji S, Babu MM. Selectivity determinants of GPCR-G-protein binding. Nature. 2017;545:317–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Strachan T, Raed A. Human genetic variability and its consequences. In: Human molecular genetics, 4th ed. Garland Science, Taylor and Francis Group. LLC, 2011:405–40.

  31. Tajan M, Paccoud R, Branka S, Edouard T, Yart A. The RASopathy family: consequences of germline activation of the RAS/MAPK pathway. Endocr Rev. 2018;39:676–700.

    Article  PubMed  Google Scholar 

  32. Weitil N, Seifert R. Distinct interactions of human β1- and β2-adrenoceptors with isoproterenol, epinephrine, norepinephrine, and dopamine. J Pharmacol Exp Ther. 2008;327:760–9.

    Article  Google Scholar 

  33. Resch B, Vollaard E, Maurer U, Haas J, Rosegger H, Müller W. Risk factors and determinants of neurodevelopmental outcome in cystic periventricular leukomalacia. Eur J Pediatr. 2000;159:663–70.

    Article  PubMed  CAS  Google Scholar 

  34. Azam S, Haque ME, Jakaria M, Jo SH, Kim IS, Choi DK. G-protein-coupled receptors in CNS: a potential therapeutic target for intervention in neurodegenerative disorders and associated cognitive deficits. Cells. 2020;9:506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chen X, Meng Y, Tang M, Wang Y, Xie Y, Wan S, et al. A paternally inherited non-sense variant c.424G>T (p.G142*) in the first exon of XLalphas in an adult patient with hypophosphatemia and osteopetrosis. Clin Genet. 2020;97:712–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Mami Miyado, Dr. Maki Fukami, and Ms. Fumiko Kato for their advice in the luciferase assays.

Funding

This work was supported by the grant from Japan Agency for Medical Research and Development (AMED) (JP25ek0109805, JP25ek0109760, JP24ek0109760, JP25ek0109674, and JP24ek0109587), by the Japanese Society for Pediatric Endocrinology Future Development Grant supported by Novo Nordisk Pharma Ltd, and by a research grant from Astellas Pharma.

Author information

Authors and Affiliations

Authors

Contributions

MI performed molecular data curation and functional studies. CN obtained clinical data and blood samples. GN evaluated skeletal findings and supervised this study. NS and JT performed whole genome sequencing. YF performed functional studies and supervised this study. TS and KO carried out protein structural analysis, HS performed molecular data curation and supervised this study. TO conceptualized this study, obtained clinical data, and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tsutomu Ogata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, M., Numakura, C., Nishimura, G. et al. De novo GNAS-Gsα variant (p.Thr55Ala) with constitutive gain-of-function effects on AVPR2 and PTH1R signalings. J Hum Genet (2026). https://doi.org/10.1038/s10038-025-01448-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s10038-025-01448-5

Search

Quick links