Table 5 Comparison of metrics for evaluating the results of the various network experiments

From: Research and implementation of mural classification based on lightweight network

Network

Params

Flops

Accuracy

Runtime

Frame rate

Resnet18

11.69 M

1.82 G

87.5%

0.107 s

10.31

Resnet34

21.80 M

3.67 G

88.3%

0.191 s

5.23

RepVGG18

11.50 M

1.80 G

86.8%

0.091 s

10.99

ShufflenetV2

2.28M

0.15G

79.8%

0.096 s

10.41

MoblienetV1

5.10 M

0.57 G

80.1%

0.147 s

6.80

MoblienetV2

3.50 M

0.32 G

81.0%

0.098 s

10.20

PeleeNet

2.80 M

0.52 G

82.7%

0.126 s

7.93

Efficientnetv2_b0

21.46 M

2.87 G

82.1%

0.129 s

7.74

MobileVit-S

5.56 M

1.42 G

85.5%

0.51 s

1.96

LightVit-T

9.4 M

0.73 G

89.1%

0.18 s

5.55

SER-Net

8.22 M

0.95 G

90.1%

0.09s

11.11

  1. The bold values represent the best (highest) performance metrics among the compared methods, highlighting the networks that achieved the top results for each evaluation metric.