Table 6 Comparison results with loss function, network depth, and autoencoder symmetry

From: Virtual restoration of ancient mold-damaged paintings based on spectral-guided asymmetric autoencoder for hyperspectral images

Method

Model

RMSE ( ↓ ,0)

RSAM ( ↓ ,0)

MPSNR (↑,+∞)

MSSIM ( ↑ ,1)

Loss Function

MoldSGR-AsyAutoencoder MAE

0.02

0.02

35.32

0.81

MoldSGR-AsyAutoencoder Huber

0.01

0.02

38.63

0.90

aMoldSGR-AsyAutoencoder RMSE

0.01

0.01

41.76

0.95

Network Depth

Encoder 3/Decode 4

0.01

0.02

38.74

0.90

Encoder 4/Decode 3

0.02

0.03

36.88

0.85

Encoder 3/Decode 3

0.02

0.03

36.87

0.85

aMoldSGR-AsyAutoencoder

0.01

0.01

41.76

0.95

Autoencoder Symmetry

Symmetric Autoencoder (Encoder 4/Decode 4)

0.01

0.02

38.63

0.90

Mirror Symmetric Autoencoder (Encoder 4/Decode 4)

0.01

0.02

39.67

0.92

aMoldSGR-AsyAutoencoder

0.01

0.01

41.76

0.95

  1. aRepresents our model, optimal results are displayed in bold.