Table 2 ATR-FTIR peaks identification for four biofouling species and associated bio-geochemical degradation areas on celadon glaze

From: Species-specific biofouling drives interfacial bio-geochemical degradation of celadon recovered from the shipwreck at Fenliuweiyu

Frequency (cm−1)

Peak assignment

Chemical origin

References

3538–3328

ν(N-H) of Amide A (proteins)

Proteinaxeous residues

18

3290–3257

ν(O-H) form H2O

Adsorbed water

18

2922–2917

νas(C-H) in methylene groups -CH2

Organic bioflims

19

2852–2849

νs(C-H) in methyl groups -CH3

Microbial lipids

19

1686–1619

ν(C=O) of Amide I

Proteins/enzymes

18

1558–1538

δ(N-H)+ν(C-N) of Amide II

Degraded collagen

18

~1466, ~1457

δ(C-H) (-CH2) scissoring

Aliphatic chains

20

1418–1402

ν3(CO32−), νas

Calcite deposits

23

~1350, ~1348

δ(N-H)+ν(C-N) of Amide III

Fibrous proteins

20

1107–1003

ν(C-O) of polysaccharides; ν(P-O-C) in EPS ν(Si-O)

EPS and Silicon

21,22

~938, ~941

νs(PO43−)

Biogenic phosphates

24

872–870

γ(CO32−) out-of-plane bend, ν2

Aragonite

23

796–772

νs(Si-O-Si) of silicate

Silicate glaze matrix

24

685–602

ν(S-S) in disulfides; ν(Fe-S) in iron sulfides

Bio-geochemical degradation products

24

532–531

ν(M-O) metal-oxygen bonds

Bio-geochemical degradation products

24

455–420

ν(S2−) sulfide lattice vibrations

Sulfide minerals

24

416–407

ν(Fe(II)-S) metal-sulfur stretching

Iron Sulfide minerals

24