Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cell Biology/Molecular Biology

MicroRNA-30 modulates metabolic inflammation by regulating Notch signaling in adipose tissue macrophages

Abstract

Background/objectives:

Obesity is a pandemic disorder that is characterized by accumulation of adipose tissue and chronic low-grade inflammation that is driven primarily by adipose tissue macrophages (ATMs). While ATM polarization from pro-(M1) to anti-(M2) inflammatory phenotype influences insulin sensitivity and energy expenditure, the mechanisms of such a switch are unclear. In the current study, we identified epigenetic pathways including microRNAs (miR) in ATMs that regulate obesity-induced inflammation.

Subjects/methods:

Male C57BL/6J mice were fed normal chow diet (NCD) or high-fat diet (HFD) for 16 weeks to develop lean and diet-induced obese mice, respectively. Transcriptome microarrays, microRNA microarrays, and MeDIP-Seq were performed on ATMs isolated from visceral fat. Pathway analysis and bone marrow-derived macrophage (BMDM) transfections further allowed computational and functional analysis of miRNA-mediated ATM polarization.

Results:

ATMs from HFD-fed mice were skewed toward M1 inflammatory phenotype. Concurrently, the expression of miRs 30a-5p, 30c-5p, and 30e-5p was downregulated in ATMs from HFD mice when compared to mice fed NCD. The miR-30 family was shown to target Delta-like-4, a Notch1 ligand, whose expression was increased in HFD ATMs. Inhibition of miR-30 in conditioned BMDM triggered Notch1 signaling, pro-inflammatory cytokine production, and M1 macrophage polarization. In addition, DNA hypermethylation was observed in mir30-associated CpG islands, suggesting that HFD downregulates miR-30 through epigenetic modifications.

Conclusions:

HFD-induced obesity downregulates miR-30 by DNA methylation thereby inducing Notch1 signaling in ATMs and their polarization to M1 macrophages. These findings identify miR-30 as a regulator of pro-inflammatory ATM polarization and suggest that miR-30 manipulation could be a therapeutic target for obesity-induced inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hamilton TA, Zhao C, Pavicic PG, Datta S. Myeloid colony-stimulating factors as regulators of macrophage polarization. Front Immunol. 2014;5:554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Boutens L, Stienstra R. Adipose tissue macrophages: going off track during obesity. Diabetologia. 2016;59:879–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces. phenotypic switch in adipose tissue macrophage polarization. J. Clin Invest. 2007;117:175–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bi P, Kuang S. Notch signaling as. novel regulator of metabolism. Trends Endocrinol Metab. 2015;26:248–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Borggrefe T, Liefke R. Fine-tuning of the intracellular canonical Notch signaling pathway. Cell Cycle. 2012;11:264–76.

    Article  PubMed  CAS  Google Scholar 

  6. Bi P, Shan T, Liu W, Yue F, Yang X, Liang X-R, et al. Inhibition of Notch signaling promotes browning of white adipose tissue and ameliorates obesity. Nat Med. 2014;20:911–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Pajvani UB, Shawber CJ, Samuel VT, Birkenfeld AL, Shulman GI, Kitajewski J, et al. Inhibition of Notch signaling ameliorates insulin resistance in. FoxO1-dependent manner. Nat Med. 2011;17:961–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Xu H, Zhu J, Smith S, Foldi J, Zhao B, Chung AY, et al. Notch-RBP-J signaling regulates the transcription factor IRF8 to promote inflammatory macrophage polarization. Nat Immunol. 2012;13:642–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Fukuda D, Aikawa E, Swirski FK, Novobrantseva TI, Kotelianski V, Gorgun CZ, et al. Notch ligand delta-like. blockade attenuates atherosclerosis and metabolic disorders. Proc Natl Acad Sci USA. 2012;109:E1868–1877.

    Article  PubMed  Google Scholar 

  10. Bam M, Yang X, Zumbrun EE, Zhong Y, Zhou J, Ginsberg JP, et al. Dysregulated immune system networks in war veterans with PTSD is an outcome of altered miRNA expression and DNA methylation. Sci Rep. 2016;6:31209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Busbee PB, Nagarkatti M, Nagarkatti PS. Natural indoles, indole-3-carbinol (I3C) and 3,3’-diindolylmethane (DIM), attenuate staphylococcal enterotoxin B-mediated liver injury by downregulating miR-31 expression and promoting caspase-2-mediated apoptosis. PLoS ONE. 2015;10:e0118506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Guan H, Singh UP, Rao R, Mrelashvili D, Sen S, Hao H, et al. Inverse correlation of expression of microRNA-140-5p with progression of multiple sclerosis and differentiation of encephalitogenic. helper type 1 cells. Immunology. 2016;147:488–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Singh UP, Murphy AE, Enos RT, Shamran HA, Singh NP, Guan H, et al. miR-155 deficiency protects mice from experimental colitis by reducing. helper type 1/type 17 responses. Immunology. 2014;143:478–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281–97.

    Article  PubMed  CAS  Google Scholar 

  15. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell. 2005;120:15–20.

    Article  PubMed  CAS  Google Scholar 

  16. Xiao C, Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009;136:26–36.

    Article  PubMed  CAS  Google Scholar 

  17. Dong C, Yoon W, Goldschmidt-Clermont PJ. DNA methylation and atherosclerosis. J. Nutr. 2002;132:2406S–2409S.

    Article  PubMed  CAS  Google Scholar 

  18. Zhang FF, Cardarelli R, Carroll J, Zhang S, Fulda KG, Gonzalez K, et al. Physical activity and global genomic DNA methylation in. cancer-free population. Epigenetics. 2011;6:293–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ge Q, Brichard S, Yi X, Li Q. microRNAs as. new mechanism regulating adipose tissue inflammation in obesity and as. novel therapeutic strategy in the metabolic syndrome. J. Immunol Res. 2014;2014:987285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, et al. Chronic inflammation in fat plays. crucial role in the development of obesity-related insulin resistance. J. Clin Invest. 2003;112:1821–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Sturn A, Quackenbush J, Trajanoski Z. Genesis: cluster analysis of microarray data. Bioinformatics. 2002;18:207–8.

    Article  PubMed  CAS  Google Scholar 

  22. Bam M, Yang X, Zhou J, Ginsberg JP, Leyden Q, Nagarkatti PS, et al. Evidence for epigenetic regulation of pro-inflammatory cytokines, interleukin-12 and interferon gamma, in peripheral blood mononuclear cells from PTSD patients. J. Neuroimmune Pharmacol. 2015;11:168–81.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lienhard M, Grimm C, Morkel M, Herwig R, Chavez L. MEDIPS: genome-wide differential coverage analysis of sequencing data derived from DNA enrichment experiments. Bioinformatics. 2014;30:284–6.

    Article  PubMed  CAS  Google Scholar 

  24. Freese NH, Norris DC, Loraine AE. Integrated genome browser: visual analytics platform for genomics. Bioinformatics. 2016;32:2089–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Liao X, Sharma N, Kapadia F, Zhou G, Lu Y, Hong H, et al. Krüppel-like factor. regulates macrophage polarization. J. Clin Invest. 2011;121:2736–49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. van Stijn CMW, Kim J, Lusis AJ, Barish GD, Tangirala RK. Macrophage polarization phenotype regulates adiponectin receptor expression and adiponectin anti-inflammatory response. FASEB J. 2015;29:636–49.

    Article  PubMed  CAS  Google Scholar 

  28. O’Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci USA. 2007;104:1604–9.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang K, Song F, Lu X, Chen W, Huang C, Li L, et al. MicroRNA-322 inhibits inflammatory cytokine expression and promotes cell proliferation in LPS-stimulated murine macrophages by targeting NF-κB1 (p50). Biosci Rep. 2017;37:BSR20160239.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bridge G, Monteiro R, Henderson S, Emuss V, Lagos D, Georgopoulou D, et al. The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood. 2012;120:5063–72.

    Article  PubMed  CAS  Google Scholar 

  31. Shan T-D, Ouyang H, Yu T, Li J-Y, Huang C-Z, Yang H-S, et al. miRNA-30e regulates abnormal differentiation of small intestinal epithelial cells in diabetic mice by downregulating Dll4 expression. Cell Prolif. 2016;49:102–14.

    Article  PubMed  CAS  Google Scholar 

  32. Fung E, Tang S-MT, Canner JP, Morishige K, Arboleda-Velasquez JF, Cardoso AA, et al. Delta-like. induces Notch signaling in macrophages. Circulation. 2007;115:2948–56.

    Article  PubMed  CAS  Google Scholar 

  33. Nakano T, Fukuda D, Koga J, Aikawa M. Delta-like ligand 4-Notch signaling in macrophage activation. Arterioscler Thromb Vasc Biol. 2016;36:2038–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Klöting N, Berthold S, Kovacs P, Schön MR, Fasshauer M, Ruschke K, et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE. 2009;4:e4699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Taganov KD,Boldin MP,Chang K-J,Baltimore D, NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. PNAS. 2006;103:12481–6.

    Article  PubMed  CAS  Google Scholar 

  36. Zhang Y, Zhang M, Zhong M, Suo Q, Lv K. Expression profiles of miRNAs in polarized macrophages. Int. Mol Med. 2013;31:797–802.

    Article  CAS  Google Scholar 

  37. Fukuda D, Aikawa M. Expanding role of delta-like. mediated notch signaling in cardiovascular and metabolic diseases. Circ J. 2013;77:2462–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Hu F, Wang M, Xiao T, Yin B, He L, Meng W, et al. miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. Diabetes. 2015;64:2056–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Soh J, Iqbal J, Queiroz J, Fernandez-Hernando C, Hussain MM. MicroRNA-30c reduces hyperlipidemia and atherosclerosis in mice by decreasing lipid synthesis and lipoprotein secretion. Nat Med. 2013;19:892–900.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Irani S, Pan X, Peck BCE, Iqbal J, Sethupathy P, Hussain MM. MicroRNA-30c mimic mitigates hypercholesterolemia and atherosclerosis in mice. J. Biol Chem. 2016;291:18397–409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis:. dynamic balance. Nat Rev Immunol. 2013;13:709–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, et al. Eosinophils and type. cytokine signaling in macrophages orchestrate development of functional beige fat. Cell. 2014;157:1292–308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, et al. Meteorin-like is. hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell. 2014;157:1279–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository Nucleic Acids Res. 2002 Jan 1;30(1):207-10.

Download references

Acknowledgements

The authors would like to thank Dr. Robert Price, Ph.D., and Director of the University of South Carolina Instrumentation Resource Facility for his kind assistance with confocal microscopy acquisition.

Author contributions

Conceptualization: KM, PSN, and MN; methodology: KM, EAM, PSN, and MN; validation: KM; formal analysis: KM and XY; investigation: KM, XY, and MB; resources: PSN and MN; writing—original draft: KM; writing—review and editing: KM, MB, PSN, and MN; visualization: KM; supervision: PSN and MN; funding acquisition: PSN and MN.

Funding

The authors would also like to acknowledge funding sources from the NIH: R01ES019313, R01MH094755, R01AI123947, R01AI129788, P01AT003961, P20GM103641, R01AT006888.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitzi Nagarkatti.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miranda, K., Yang, X., Bam, M. et al. MicroRNA-30 modulates metabolic inflammation by regulating Notch signaling in adipose tissue macrophages. Int J Obes 42, 1140–1150 (2018). https://doi.org/10.1038/s41366-018-0114-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-018-0114-1

This article is cited by

Search

Quick links