Abstract
Objectives
To examine whether leisure time physical activity changes predict subsequent body mass index (BMI) changes, and conversely, whether BMI changes predict subsequent leisure time physical activity changes.
Methods
This prospective cohort study included adults attending ≥3 consecutive Tromsø Study surveys (time: T1, T2, T3) during 1974–2016 (n = 10779). If participants attended >3 surveys, we used the three most recent surveys. We computed physical activity change (assessed by the Saltin-Grimby Physical Activity Level Scale) from T1 to T2, categorized as Persistently Inactive (n = 992), Persistently Active (n = 7314), Active to Inactive (n = 1167) and Inactive to Active (n = 1306). We computed BMI change from T2 to T3, which regressed on preceding physical activity changes using analyses of covariance. The reverse association (BMI change from T1 to T2 and physical activity change from T2 to T3; n = 4385) was assessed using multinomial regression.
Results
Average BMI increase was 0.86 kg/m2 (95% CI: 0.82–0.90) from T2 to T3. With adjustment for sex, birth year, education, smoking and BMI at T2, there was no association between physical activity change from T1 to T2 and BMI change from T2 to T3 (Persistently Inactive: 0.89 kg/m2 (95% CI: 0.77–1.00), Persistently Active: 0.85 kg/m2 (95% CI: 0.81–0.89), Active to Inactive: 0.90 kg/m2 (95% CI: 0.79–1.00), Inactive to Active 0.85 kg/m2 (95% CI: 0.75–0.95), p = 0.84). Conversely, increasing BMI was associated with Persistently Inactive (odds ratio (OR): 1.17, 95% CI: 1.08–1.27, p < 0.001) and changing from Active to Inactive (OR: 1.16, 95% CI: 1.07–1.25, p < 0.001) compared with being Persistently Active.
Conclusions
We found no association between leisure time physical activity changes and subsequent BMI changes, whereas BMI change predicted subsequent physical activity change. These findings indicate that BMI change predicts subsequent physical activity change at population level and not vice versa.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the Tromsø Study but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. The data are however available from the Tromsø Study upon application to the Data and Publication Committee for the Tromsø Study: tromsous@uit.no.
References
NCD-RisC NRFC. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet. 2016;387:1377–96.
Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, Lee A, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med. 2017;377:13–27.
Hill JO, Wyatt HR, Peters JC. Energy balance and obesity. Circulation. 2012;126:126–32.
Jakicic JM, Powell KE, Campbell WW, Dipietro L, Pate RR, Pescatello LS, et al. Physical activity and the prevention of weight gain in adults: a systematic review. Med Sci Sports Exerc. 2019;51:1262–9.
Jones PR, Ekelund U. Physical activity in the prevention of weight gain: the impact of measurement and interpretation of associations. Curr Obes Rep. 2019;8:66–76.
Basterra-Gortari FJ, Bes-Rastrollo M, Pardo-Fernández M, Forga L, Martinez JA, Martínez-González MA. Changes in weight and physical activity over two years in Spanish alumni. Med Sci Sports Exerc. 2009;41:516–22.
Blanck HM, McCullough ML, Patel AV, Gillespie C, Calle EE, Cokkinides VE, et al. Sedentary behavior, recreational physical activity, and 7-year weight gain among postmenopausal U.S. women. Obesity (Silver Spring). 2007;15:1578–88.
Brown WJ, Kabir E, Clark BK, Gomersall SR. Maintaining a healthy BMI: data from a 16-year study of young Australian women. Am J Prev Med. 2016;51:e165–e78.
Hillemeier MM, Weisman CS, Chuang C, Downs DS, McCall-Hosenfeld J, Camacho F. Transition to overweight or obesity among women of reproductive age. J Womens Health. 2011;20:703–10.
Kaikkonen JE, Mikkilä V, Juonala M, Keltikangas-Järvinen L, Hintsanen M, Pulkki-Råback L, et al. Factors associated with six-year weight change in young and middle-aged adults in the Young Finns Study. Scand J Clin Lab Invest. 2015;75:133–44.
Rosenberg L, Kipping-Ruane KL, Boggs DA, Palmer JR. Physical activity and the incidence of obesity in young African-American women. Am J Prev Med. 2013;45:262–8.
Sjösten N, Kivimäki M, Singh-Manoux A, Ferrie JE, Goldberg M, Zins M, et al. Change in physical activity and weight in relation to retirement: the French GAZEL Cohort Study. BMJ Open. 2012;2:e000522.
Williams PT, Wood PD. The effects of changing exercise levels on weight and age-related weight gain. Int J Obes. 2006;30:543–51.
Williams PT, Thompson PD. Dose-dependent effects of training and detraining on weight in 6406 runners during 7.4 years. Obesity. 2006;14:1975–84.
Gebel K, Ding D, Bauman AE. Volume and intensity of physical activity in a large population-based cohort of middle-aged and older Australians: prospective relationships with weight gain, and physical function. Prev Med. 2014;60:131–3.
Gradidge PJ, Norris SA, Micklesfield LK, Crowther NJ. The role of lifestyle and psycho-social factors in predicting changes in body composition in Black South African women. PLoS One. 2015;10:e0132914.
MacInnis RJ, Hodge AM, Dixon HG, Peeters A, Johnson LE, English DR, et al. Predictors of increased body weight and waist circumference for middle-aged adults. Public Health Nutr. 2014;17:1087–97.
Sims ST, Larson JC, Lamonte MJ, Michael YL, Martin LW, Johnson KC, et al. Physical activity and body mass: changes in younger versus older postmenopausal women. Med Sci Sports Exerc. 2012;44:89–97.
Chiriboga DE, Ma Y, Li W, Olendzki BC, Pagoto SL, Merriam PA, et al. Gender differences in predictors of body weight and body weight change in healthy adults. Obesity. 2008;16:137–45.
Barone Gibbs B, Pettee Gabriel K, Carnethon MR, Gary-Webb T, Jakicic JM, Rana JS, et al. Sedentary time, physical activity, and adiposity: cross-sectional and longitudinal associations in CARDIA. Am J Prev Med. 2017;53:764–71.
Dugas LR, Kliethermes S, Plange-Rhule J, Tong L, Bovet P, Forrester TE, et al. Accelerometer-measured physical activity is not associated with two-year weight change in African-origin adults from five diverse populations. PeerJ. 2017;5:e2902.
Ekelund U, Kolle E, Steene-Johannessen J, Dalene KE, Nilsen AKO, Anderssen SA, et al. Objectively measured sedentary time and physical activity and associations with body weight gain: does body weight determine a decline in moderate and vigorous intensity physical activity? Int J Obes. 2017;41:1769–74.
Botoseneanu A, Liang J. The effect of stability and change in health behaviors on trajectories of body mass index in older Americans: a 14-year longitudinal study. J Gerontol A Biol Sci Med Sci. 2012;67:1075–84.
de Munter JS, Tynelius P, Magnusson C, Rasmussen F. Longitudinal analysis of lifestyle habits in relation to body mass index, onset of overweight and obesity: results from a large population-based cohort in Sweden. Scand J Public Health. 2015;43:236–45.
Drenowatz C, Gribben N, Wirth MD, Hand GA, Shook RP, Burgess S, et al. The association of physical activity during weekdays and weekend with body composition in young adults. J Obes. 2016;2016:8236439.
Hamer M, Brunner EJ, Bell J, Batty GD, Shipley M, Akbaraly T, et al. Physical activity patterns over 10 years in relation to body mass index and waist circumference: the Whitehall II cohort study. Obesity. 2013;21:E755–61.
Hankinson AL, Daviglus ML, Bouchard C, Carnethon M, Lewis CE, Schreiner PJ, et al. Maintaining a high physical activity level over 20 years and weight gain. JAMA. 2010;304:2603–10.
Lee IM, Djoussé L, Sesso HD, Wang L, Buring JE. Physical activity and weight gain prevention. JAMA. 2010;303:1173–9.
Moholdt T, Wisløff U, Lydersen S, Nauman J. Current physical activity guidelines for health are insufficient to mitigate long-term weight gain: more data in the fitness versus fatness debate (The HUNT study, Norway). Br J Sports Med. 2014;48:1489–96.
Parsons TJ, Manor O, Power C. Physical activity and change in body mass index from adolescence to mid-adulthood in the 1958 British cohort. Int J Epidemiol. 2006;35:197–204.
Smith KJ, Gall SL, McNaughton SA, Cleland VJ, Otahal P, Dwyer T, et al. Lifestyle behaviours associated with 5-year weight gain in a prospective cohort of Australian adults aged 26-36 years at baseline. BMC Public Health. 2017;17:54.
Kim Y, Lee JM, Kim J, Dhurandhar E, Soliman G, Wehbi NK, et al. Longitudinal associations between body mass index, physical activity, and healthy dietary behaviors in adults: a parallel latent growth curve modeling approach. PLoS ONE. 2017;12:e0173986.
Su C, Jia XF, Wang ZH, Wang HJ, Ouyang YF, Zhang B. Longitudinal association of leisure time physical activity and sedentary behaviors with body weight among Chinese adults from China Health and Nutrition Survey 2004-2011. Eur J Clin Nutr. 2017;71:383–8.
Brien SE, Katzmarzyk PT, Craig CL, Gauvin L. Physical activity, cardiorespiratory fitness and body mass index as predictors of substantial weight gain and obesity: the Canadian physical activity longitudinal study. Can J Public Health. 2007;98:121–4.
Drenowatz C, Hill JO, Peters JC, Soriano-Maldonado A, Blair SN. The association of change in physical activity and body weight in the regulation of total energy expenditure. Eur J Clin Nutr. 2017;71:377–82.
French SA, Mitchell NR, Hannan PJ. Decrease in television viewing predicts lower body mass index at 1-year follow-up in adolescents, but not adults. J Nutr Educ Behav. 2012;44:415–22.
Mortensen LH, Siegler IC, Barefoot JC, Grønbaek M, Sørensen TI. Prospective associations between sedentary lifestyle and BMI in midlife. Obesity. 2006;14:1462–71.
Richmond RC, Davey Smith G, Ness AR, den Hoed M, McMahon G, Timpson NJ. Assessing causality in the association between child adiposity and physical activity levels: a Mendelian randomization analysis. PLoS Med. 2014;11:e1001618.
Golubic R, Ekelund U, Wijndaele K, Luben R, Khaw KT, Wareham NJ, et al. Rate of weight gain predicts change in physical activity levels: a longitudinal analysis of the EPIC-Norfolk cohort. Int J Obes. 2013;37:404–9.
Sagelv EH, Ekelund U, Hopstock LA, Aars NA, Fimland MS, Jacobsen BK, et al. Do declines in occupational physical activity contribute to population gains in body mass index? Tromsø Study 1974–2016. Occup Environ Med. 2021;78:203–10.
Morseth B, Hopstock LA. Time trends in physical activity in the Tromsø study: an update. PLoS ONE. 2020;15:e0231581.
Church TS, Thomas DM, Tudor-Locke C, Katzmarzyk PT, Earnest CP, Rodarte RQ, et al. Trends over 5 decades in U.S. occupation-related physical activity and their associations with obesity. PLoS One. 2011;6:e19657.
Jacobsen BK, Eggen AE, Mathiesen EB, Wilsgaard T, Njølstad I. Cohort profile: the Tromsø Study. Int J Epidemiol. 2012;41:961–7.
Saltin B, Grimby G. Physiological analysis of middle-aged and old former athletes. Comparison with still active athletes of the same ages. Circulation. 1968;38:1104–15.
Grimby G, Börjesson M, Jonsdottir IH, Schnohr P, Thelle DS, Saltin B. The “Saltin-Grimby Physical Activity Level Scale” and its application to health research. Scand J Med Sci Sports. 2015;25:119–25. Suppl 4
Shibata AI, Oka K, Sugiyama T, Salmon JO, Dunstan DW, Owen N. Physical activity, television viewing time, and 12-year changes in waist circumference. Med Sci Sports Exerc. 2016;48:633–40.
Ekelund U, Åman J, Yngve A, Renman C, Westerterp K, Sjöström M. Physical activity but not energy expenditure is reduced in obese adolescents: a case-control study. Am J Clin Nutr. 2002;76:935–41.
Levine JA, McCrady SK, Lanningham-Foster LM, Kane PH, Foster RC, Manohar CU. The role of free-living daily walking in human weight gain and obesity. Diabetes. 2008;57:548–54.
Hill JO, Wyatt HR, Reed GW, Peters JC. Obesity and the environment: where do we go from here? Science. 2003;299:853–5.
Swinburn B, Sacks G, Ravussin E. Increased food energy supply is more than sufficient to explain the US epidemic of obesity. Am J Clin Nutr. 2009;90:1453–6.
Dave D, Doytch N, Kelly IR. Nutrient intake: a cross-national analysis of trends and economic correlates. Soc Sci Med. 2016;158:158–67.
Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sport Med. 2020;54:1451–62.
Guthold R, Stevens GA, Riley LM, Bull FC. Worldwide trends in insufficient physical activity from 2001 to 2016: a pooled analysis of 358 population-based surveys with 1.9 million participants. Lancet Glob Health. 2018;;6:e1077–e86.
Swinburn BA, Sacks G, Hall KD, McPherson K, Finegood DT, Moodie ML, et al. The global obesity pandemic: shaped by global drivers and local environments. Lancet. 2011;378:804–14.
Vandevijvere S, Chow CC, Hall KD, Umali E, Swinburn BA. Increased food energy supply as a major driver of the obesity epidemic: a global analysis. Bull World Health Organ. 2015;93:446–56.
Warburton DER, Bredin SSD. Health benefits of physical activity: a systematic review of current systematic reviews. Curr Opin Cardiol. 2017;32:541–56.
Bagnall AM, Radley D, Jones R, Gately P, Nobles J, Van Dijk M, et al. Whole systems approaches to obesity and other complex public health challenges: a systematic review. BMC Public Health. 2019;19:8.
Lee BY, Bartsch SM, Mui Y, Haidari LA, Spiker ML, Gittelsohn J. A systems approach to obesity. Nutr Rev. 2017;75 Suppl 1:94–106.
Shephard R, Vuillemin A. Limits to the measurement of habitual physical activity by questionnaires. Br J Sports Med. 2003;37:197–206.
Aalen OO, Røysland K, Gran JM, Ledergerber B. Causality, mediation and time: a dynamic viewpoint. J R Stat Soc. 2012;175:831–61.
Acknowledgements
We would like to acknowledge Professor Bjarne Koster Jacobsen for valuable input on the study´s result and for revising working manuscript drafts.
Funding
The work of EHS is funded by Population Studies in the High North (Befolkningsundersøkelser i Nord: BiN). The remaining authors are funded by their respective positions/tenures. The funders had no role in the implementation and design of the study or in writing the manuscript.
Author information
Authors and Affiliations
Contributions
EHS, BM, UE, LAH designed the study, EHS carried out data analysis, OL and TW provided statistical expertise, all authors interpreted the study results, EHS drafted the manuscript, and all authors contributed with manuscript revisions and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Ethics approval and consent to participate
All participants from Tromsø 4–7 provided written informed consent and the present study was approved by the Regional Ethics Committee for Medical Research (ref. 2016/758410).
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
About this article
Cite this article
Sagelv, E.H., Ekelund, U., Hopstock, L.A. et al. The bidirectional associations between leisure time physical activity change and body mass index gain. The Tromsø Study 1974–2016. Int J Obes 45, 1830–1843 (2021). https://doi.org/10.1038/s41366-021-00853-y
Received:
Revised:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41366-021-00853-y


