Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Techniques and Methods

Western diet since adolescence impairs brain functional hyperemia at adulthood in mice: rescue by a balanced ω-3:ω-6 polyunsaturated fatty acids ratio

Abstract

Background/Objective

Obesity is a devastating worldwide metabolic disease, with the highest prevalence in children and adolescents. Obesity impacts neuronal function but the fate of functional hyperemia, a vital mechanism making possible cerebral blood supply to active brain areas, is unknown in organisms fed a high-caloric Western Diet (WD) since adolescence.

Subjects/Methods

We mapped changes in cerebral blood volume (CBV) in the somatosensory cortex in response to whisker stimulation in adolescent, adult, and middle-aged mice fed a WD since adolescence. To this aim, we used non-invasive and high-resolution functional ultrasound imaging (fUS).

Results

We efficiently mimicked the metabolic syndrome of adolescents in young mice with early weight gain, dysfunctional glucose homeostasis, and insulinemia. Functional hyperemia is compromised as early as 3 weeks of WD and remains impaired after that in adolescent mice. These findings highlight the cerebrovascular vulnerability to WD during adolescence. In WD, ω-6:ω-3 polyunsaturated fatty acids (PUFAs) ratio is unbalanced towards proinflammatory ω-6. A balanced ω-6:ω-3 PUFAs ratio in WD achieved by docosahexaenoic acid supplementation efficiently restores glucose homeostasis and functional hyperemia in adults.

Conclusions

WD triggers a rapid impairment in cerebrovascular activity in adolescence, which is maintained at older ages, and can be rescued by a PUFA-based nutraceutical approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Glucose metabolism in mice fed a WD at adolescence is altered from 3 weeks to 10 months of diet compared to age-matched RD mice.
Fig. 2: Impaired functional hyperemia to whisker stimulations in adolescent, adult, and middle-aged mice fed a WD since adolescence compared to age-matched RD mice.
Fig. 3: Functional hyperemia dynamics during mouse development are different in mice under western diet versus regular diet.
Fig. 4: Impairment in glucose metabolism in mice with obesity due to WD is canceled by feeding with WD balanced in the ω-3:ω-6 PUFAs ratio.
Fig. 5: The amplitude of functional hyperemia is restored in adult WD-fed mice with a balanced ω-3:ω-6 PUFAs ratio.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files). Detailed individual analysis will be made available upon request pending application and approval from the corresponding authors.

References

  1. World Health Organization. Overweight and obesity. Updated March 1, 2024. Accessed January 30, 2025. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight.

  2. Ogden CL, Carroll MD, Lawman HG, Fryar CD, Kruszon-Moran D, Kit BK, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA. 2016;315:2292–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635–43.

    CAS  PubMed  Google Scholar 

  4. Goossens GH. The metabolic phenotype in obesity: fat mass, body fat distribution, and adipose tissue function. Obes Facts. 2017;10:207–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Sorop O, Dylan Olver T, van de Wouw J, Heinonen I, van Duin RW, Duncker DJ, et al. The microcirculation: a key player in obesity-associated cardiovascular disease. Cardiovasc Res. 2017;113:1035–45.

    CAS  PubMed  Google Scholar 

  6. Soleimanzad H, Montaner M, Ternier G, Lemitre M, Silvestre JS, Kassis N, et al. Obesity in midlife hampers resting and sensory-evoked cerebral blood flow in mice. Obesity. 2021;29:150–8.

    CAS  PubMed  Google Scholar 

  7. Coucha M, Abdelsaid M, Ward R, Abdul Y, Ergul A. Impact of metabolic diseases on cerebral circulation: structural and functional consequences. Compr Physiol. 2018;8:773–99.

    PubMed  PubMed Central  Google Scholar 

  8. Li Y, Dai Q, Jackson JC, Zhang J. Overweight is associated with decreased cognitive functioning among school-age children and adolescents. Obesity. 2008;16:1809–15.

    PubMed  Google Scholar 

  9. Yau PL, Castro MG, Tagani A, Tsui WH, Convit A. Obesity and metabolic syndrome and functional and structural brain impairments in adolescence. Pediatrics. 2012;130:e856–64.

    PubMed  PubMed Central  Google Scholar 

  10. Garcia-Serrano AM, Duarte JMN. Brain metabolism alterations in type 2 diabetes: what did we learn from diet-induced diabetes models? Front Neurosci. 2020;14:229.

    PubMed  PubMed Central  Google Scholar 

  11. Campana M, Bellini L, Rouch C, Rachdi L, Coant N, Butin N, et al. Inhibition of central de novo ceramide synthesis restores insulin signaling in hypothalamus and enhances β-cell function of obese Zucker rats. Mol Metab. 2018;8:23–36.

    CAS  PubMed  Google Scholar 

  12. Qiao YS, Tang X, Chai YH, Gong HG, Xu H, Patel I, et al. Cerebral blood flow alterations and obesity: a systematic review and meta-analysis. J Alzheimers Dis. 2012;90:15–31.

    Google Scholar 

  13. Iadecola C. The neurovascular unit coming of age: a journey through neurovascular coupling in health and disease. Neuron. 2017;96:17–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci. 2012;24:1198–209.

    Google Scholar 

  15. Duncombe J, Kitamura A, Hase Y, Ihara M, Kalaria RJ, Horsburgh K. Chronic cerebral hypoperfusion: a key mechanism leading to vascular cognitive impairment and dementia. Closing the translational gap between rodent models and human vascular cognitive impairment and dementia. Clin Sci. 2017;131:2451–68.

    CAS  Google Scholar 

  16. Claassen JAHR, Diaz-Arrastia R, Martin-Cook K, Levine BD, Zhang R. Altered cerebral hemodynamics in early Alzheimer disease: a pilot study using transcranial Doppler. J Alzheimers Dis. 2009;17:621–9.

    PubMed  PubMed Central  Google Scholar 

  17. Duarte JV, Pereira JMS, Quendera B, Raimundo M, Moreno C, Gomes L, et al. Early disrupted neurovascular coupling and changed event level hemodynamic response function in type 2 diabetes: an fMRI study. J Cereb Blood Flow Metab. 2015;35:1671–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Valcarcel-Ares VMN, Tucsek Z, Kiss T, Giles CB, Tarantini S, Yabluchanskiy A, et al. Obesity in aging exacerbates neuroinflammation, dysregulating synaptic function-related genes and altering eicosanoid synthesis in the mouse hippocampus: potential role in impaired synaptic plasticity and cognitive decline. J Gerontol A Biol Sci Med Sci. 2019;74:290–8.

    CAS  PubMed  Google Scholar 

  19. Tucsek Z, Toth P, Tarantini S, Sosnowska D, Gautam T, Warrington JP, et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci. 2014;69:1339–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Markicevic M, Savvateev I, Grimm C, Zerbi V. Emerging imaging methods to study whole-brain function in rodent models. Transl Psychiatry. 2021;11:457.

    PubMed  PubMed Central  Google Scholar 

  21. Moradi S, Ferdinando H, Zienkiewicz A, Särestöniemi M, Myllylä T. Measurement of cerebral circulation in human. In: Cerebral circulation—updates on models, diagnostics and treatments of related diseases. Ebook editors: Scerrati A., Ricciardi L., Dones F. Ferrara, Italy. (IntechOpen, 2022). https://doi.org/10.5772/intechopen.102383.

  22. Tanter M, Fink M. Ultrafast imaging in biomedical ultrasound. IEEE Trans Ultrason Ferroelectr Freq Control. 2014;61:102–19.

    PubMed  Google Scholar 

  23. Tanter M, Bercoff J, Sandrin L, Fink M. Ultrafast compound imaging for 2-D motion vector estimation: application to transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control. 2002;49:1363–74.

    PubMed  Google Scholar 

  24. Deffieux T, Demene C, Pernot M, Tanter M. Functional ultrasound neuroimaging: a review of the preclinical and clinical state of the art. Curr Opin Neurobiol. 2018;50:128–35.

    CAS  PubMed  Google Scholar 

  25. Rahal L, Thibaut M, Rivals I, Claron J, Lenkei Z, Sitt JD, et al. Ultrafast ultrasound imaging pattern analysis reveals distinctive dynamic brain states and potent sub-network alterations in arthritic animals. Sci Rep. 2020;10:10485.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bortolin RC, Vargas AR, Gasparotto J, Chaves PR, Schnorr CE, Martinello B, et al. A new animal diet based on human Western diet is a robust diet-induced obesity model: comparison to high-fat and cafeteria diets in term of metabolic and gut microbiota disruption. Int J Obes. 2018;42:525–34.

    CAS  Google Scholar 

  27. Satterthwaite TD, Shinohara RT, Wolf DH, Hopson RD, Elliott MA, Vandekar SN, et al. Impact of puberty on the evolution of cerebral perfusion during adolescence. Proc Natl Acad Sci USA. 2014;111:8643–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Ronan L, Alexander-Bloch AF, Wagstyl K, Farooqi S, Brayne C, Tyler LK, et al. Obesity associated with increased brain age from midlife. Neurobiol Aging. 2016;47:63–70.

    PubMed  PubMed Central  Google Scholar 

  29. Boitard C, Etchamendy N, Sauvant J, Aubert A, Tronel S, Marighetto A, et al. Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus. 2012;22:2095–100.

    CAS  PubMed  Google Scholar 

  30. Murray S, Chen EY. Examining adolescence as a sensitive period for high-fat, high-sugar diet exposure: a systematic review of the animal literature. Front Neurosci. 2019;13:1108.

    PubMed  PubMed Central  Google Scholar 

  31. Simopoulos AP. Evolutionary aspects of diet: the omega-6/omega-3 ratio and the brain. Mol Neurobiol. 2011;44:203–15.

    CAS  PubMed  Google Scholar 

  32. Bernasconi AA, Wiest MM, Lavie CJ, Milani RV, Laukkanen JA. Effect of omega-3 dosage on cardiovascular outcomes: an updated meta-analysis and meta-regression of interventional trials. Mayo Clin Proc. 2021;96:304–13.

    CAS  PubMed  Google Scholar 

  33. Yamagata K. Dietary docosahexaenoic acid inhibits neurodegeneration and prevents stroke. J Neurosci Res. 2021;99:561–72.

    CAS  PubMed  Google Scholar 

  34. Abbott KA, Burrows TL, Acharya S, Thota RN, Garg ML. DHA-enriched fish oil reduces insulin resistance in overweight and obese adults. Prostaglandins Leukot Essent Fat Acids. 2020;159:102154.

    CAS  Google Scholar 

  35. Yamagata K. Docosahexaenoic acid regulates vascular endothelial cell function and prevents cardiovascular disease. Lipids Health Dis. 2017;16:118.

    PubMed  PubMed Central  Google Scholar 

  36. Kansra AR, Lakkunarajah S, Jay MS. Childhood and adolescent obesity: a review. Front Pediatr. 2020;8:581461.

    PubMed  Google Scholar 

  37. Pulgaron ER, Delamater AM. Obesity and type 2 diabetes in children: epidemiology and treatment. Curr Diab Rep. 2014;14:508.

    PubMed  PubMed Central  Google Scholar 

  38. George MM, Copeland KC. Current treatment options for type 2 diabetes mellitus in youth: today’s realities and lessons from the TODAY study. Curr Diab Rep. 2013;13:72–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Cruciani-Guglielmacci C, Vincent-Lamon M, Rouch C, Orosco M, Ktorza A, Magnan C. Early changes in insulin secretion and action induced by high-fat diet are related to a decreased sympathetic tone. Am J Physiol Endocrinol Metab. 2005;288:E148–54.

    CAS  PubMed  Google Scholar 

  40. Khazen T, Hatoum OA, Ferreira G, Maroun M. Acute exposure to a high-fat diet in juvenile male rats disrupts hippocampal-dependent memory and plasticity through glucocorticoids. Sci Rep. 2019;9:12270.

    PubMed  PubMed Central  Google Scholar 

  41. Selim M, Jones R, Novak P, Zhao P, Novak V. The effects of body mass index on cerebral blood flow velocity. Clin Auton Res. 2008;18:331–8.

    PubMed  PubMed Central  Google Scholar 

  42. Peng SL, Chen CM. The influence of obesity on cerebral blood flow in young adults using arterial spin labeling MRI. NMR Biomed. 2020;33:e4375.

    CAS  PubMed  Google Scholar 

  43. Tagi VM, Chiarelli F. Obesity and insulin resistance in children. Curr Opin Pediatr. 2020;32:582–8.

    PubMed  Google Scholar 

  44. Redel JM, DiFrancesco M, Lee GR, Ziv A, Dolan LM, Brady CC. Cerebral blood flow is lower in youth with type 2 diabetes compared to obese controls: a pilot study. Pediatr Diab. 2022;23:291–300.

    Google Scholar 

  45. Li W, Prakash R, Chawla D, Du W, Didion SP, Filosa JA, et al. Early effects of high-fat diet on neurovascular function and focal ischemic brain injury. Am J Physiol Regul Integr Comp Physiol. 2013;304:R1001–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Haley MJ, Krishnan S, Burrows D, de Hoog L, Thakrar J, Schiessl I, et al. Acute high-fat feeding leads to disruptions in glucose homeostasis and worsens stroke outcome. J Cereb Blood Flow Metab. 2019;39:1026–37.

    CAS  PubMed  Google Scholar 

  47. Naneix F, Bakoyiannis I, Santoyo-Zedillo M, Bosch-Bouju C, Pacheco-Lopez G, Coutureau E, et al. Chemogenetic silencing of hippocampus and amygdala reveals a double dissociation in periadolescent obesogenic diet-induced memory alterations. Neurobiol Learn Mem. 2021;178:107354.

    PubMed  Google Scholar 

  48. Stone EA, Quartermain D. Greater behavioral effects of stress in immature as compared to mature male mice. Physiol Behav. 1997;63:143–5.

    CAS  PubMed  Google Scholar 

  49. Andersen SL. Trajectories of brain development: point of vulnerability or window of opportunity? Neurosci Biobehav Rev. 2003;27:3–18.

    PubMed  Google Scholar 

  50. Zou P, Scoggins MA, Li Y, Jones M, Helton KJ, Ogg RJ. Developmental patterns of CBF and BOLD responses to visual stimulus. J Cereb Blood Flow Metab. 2021;41:630–40.

    PubMed  Google Scholar 

  51. Baller EB, Valcarcel AM, Adebimpe A, Alexander-Bloch A, Cui Z, Gur RC, et al. Developmental coupling of cerebral blood flow and fMRI fluctuations in youth. Cell Rep. 2022;38:110576.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen JJ, Rosas HD, Salat DH. Age-associated reductions in cerebral blood flow are independent from regional atrophy. NeuroImage. 2011;55:468–78.

    PubMed  Google Scholar 

  53. Ryder JR, Northrop E, Rudser KD, Kelly AS, Gao Z, Khoury PR, et al. Accelerated early vascular aging among adolescents with obesity and/or type 2 diabetes mellitus. J Am Heart Assoc. 2020;9:e014891.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Williams WKA, Magnuson M, Majeed W, LaConte SM, Peltier SJ, Huet XP, et al. Comparison of alpha-chloralose, medetomidine and isoflurane anesthesia for functional connectivity mapping in the rat. Magn Reson Imaging. 2010;28:995–1003.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Mace E, Montaldo G, Osmanski BF, Cohen I, Fink M, Tanter M. Functional ultrasound imaging of the brain. Nat Methods. 2011;8:662–4.

    CAS  PubMed  Google Scholar 

  56. Boido D, Rungta RL, Osmanski BF, Roche M, Tsurugizawa T, Le Bihan D, et al. Mesoscopic and microscopic imaging of sensory responses in the same animal. Nat Commun. 2019;10:1110.

  57. Bertolo A, et al. High sensitivity mapping of brain-wide functional networks in awake mice using simultaneous multi-slice fUS imaging. Imaging Neurosci. 2023;1:1–18.

    Google Scholar 

  58. Ferrier J, Tiran E, Deffieux T, Tanter M, Lenkei Z. Functional imaging evidence for task-induced deactivation and disconnection of a major default mode network hub in the mouse brain. Proc Natl Acad Sci USA. 2020;117:15270–80.

    PubMed  PubMed Central  Google Scholar 

  59. Gobato AO, Vasques AC, Zambon MP, Barros Filho Ade A, Hessel G. Metabolic syndrome and insulin resistance in obese adolescents. Rev Paul Pediatr. 2014;32:55–62.

    PubMed  PubMed Central  Google Scholar 

  60. Frosch OH, Yau PL, Osorio RS, Rusinek H, Storey P, Convit A. Insulin resistance among obese middle-aged is associated with decreased cerebrovascular reactivity. Neurology. 2017;89:249–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153–62.

    CAS  PubMed  Google Scholar 

  62. Erdös B, Snipes JA, Miller AW, Busija DW. Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C. Diabetes. 2004;53:1352–9.

    PubMed  Google Scholar 

  63. Gurzell EA, Teague H, Harris M, Clinthorne J, Shaikh SR, Fenton JI. DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function. J Leukoc Biol. 2013;93:463–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin Y, Bai M, Wang S, Chen L, Li Z, Li C, et al. Lactate is a key mediator that links obesity to insulin resistance via modulating cytokine production from adipose tissue. Diabetes. 2022;71:637–52.

    CAS  PubMed  Google Scholar 

  65. Rahman MdH, Bhusal A, Kim JH, Jha MK, Song GJ, Go Y, et al. Astrocytic pyruvate dehydrogenase kinase-2 is involved in hypothalamic inflammation in mouse models of diabetes. Nat Commun. 2020;11:5906.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Front Endocrinol. 2023;14:1149239.

    Google Scholar 

  67. Maschari D, Saxena G, Law TD, Walsh E, Campbell MC, Consitt LA. Lactate-induced lactylation in skeletal muscle is associated with insulin resistance in humans. Front Physiol. 2022;13:951390.

    PubMed  PubMed Central  Google Scholar 

  68. Gunawan F, Matson BC, Coppoli A, Jiang L, Ding Y, Perry R, et al. Deficits in brain glucose transport among younger adults with obesity. Obesity. 2024;32:1329–38.

    CAS  PubMed  Google Scholar 

  69. Rebelos E, Bucci M, Karjalainen T, Oikonen V, Bertoldo A, Hannukainen JC, et al. Insulin resistance is associated with enhanced brain glucose uptake during euglycemic hyperinsulinemia: a large-scale PET cohort. Diab Care. 2021;44:788–94.

    CAS  Google Scholar 

  70. Cadario F. Vitamin D and ω-3 polyunsaturated fatty acids towards a personalized nutrition of youth diabetes: a narrative lecture. Nutrients. 2022;14:4887.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Munro IA, Garg ML. Dietary supplementation with long chain omega-3 polyunsaturated fatty acids and weight loss in obese adults. Obes Res Clin Pract. 2013;7:e173–81.

    PubMed  Google Scholar 

  72. Martínez-Fernández L, Laiglesia LM, Huerta AE, Martínez JA, Moreno-Aliaga MJ. Omega-3 fatty acids and adipose tissue function in obesity and metabolic syndrome. Prostaglandins Other Lipid Mediat. 2015;121:24–41.

    PubMed  Google Scholar 

  73. Dangardt F, Osika W, Chen Y, Nilsson U, Gan LM, Gronowitz E, et al. Omega-3 fatty acid supplementation improves vascular function and reduces inflammation in obese adolescents. Atherosclerosis. 2010;212:580–5.

    CAS  PubMed  Google Scholar 

  74. Sun GY, Simonyi A, Fritsche KL, Chuang DL, Hannink M, Gu Z, et al. Docosahexaenoic acid (DHA): an essential nutrient and a nutraceutical for brain health and diseases. Prostaglandins Leukot Essent Fat Acids. 2018;136:3–13.

    CAS  Google Scholar 

  75. Innes JK, Calder PC. Omega-6 fatty acids and inflammation. Prostaglandins Leukot Essent Fat Acids. 2018;132:41–48.

    CAS  Google Scholar 

  76. Simopoulos AP. An increase in the omega-6/omega-3 fatty acid ratio increases the risk for obesity. Nutrients. 2016;8:128.

    PubMed  PubMed Central  Google Scholar 

  77. Joris PJ, Mensink RP, Adam TC, Liu TT. Cerebral blood flow measurements in adults: a review on the effects of dietary factors and exercise. Nutrients. 2018;10:530.

    PubMed  PubMed Central  Google Scholar 

  78. de Wilde MC, Farkas E, Gerrits M, Kiliaan AJ, Luiten PGM. The effect of n-3 polyunsaturated fatty acid-rich diets on cognitive and cerebrovascular parameters in chronic cerebral hypoperfusion. Brain Res. 2002;947:166–73.

    PubMed  Google Scholar 

  79. Arnoldussen IAC, Zerbi V, Wiesmann M, Noordman RHJ, Bolijn S, Mutsaers MPC, et al. Early intake of long-chain polyunsaturated fatty acids preserves brain structure and function in diet-induced obesity. J Nutr Biochem. 2016;30:177–88.

    CAS  PubMed  Google Scholar 

  80. Charrière K, Ghzaiel I, Lizard G, Vejux A. Involvement of microglia in neurodegenerative diseases: beneficial effects of docosahexahenoic acid (DHA) supplied by food or combined with nanoparticles. Int J Mol Sci. 2021;22:10639.

    PubMed  PubMed Central  Google Scholar 

  81. Balbi M, Ghosh M, Longden TA, Vega MJ, Gesierich B, Hellal F, et al. Dysfunction of mouse cerebral arteries during early aging. J Cereb Blood Flow Metab. 2015;35:1445–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Zaletel M, Strucl M, Pretnar-Oblak J, Zvan B. Age-related changes in the relationship between visual evoked potentials and visually evoked cerebral blood flow velocity response. Funct Neurol 2005;20:115–20.

    PubMed  Google Scholar 

  83. Spear LP. The adolescent brain and age-related behavioral manifestations. Neurosci Biobehav Rev. 2000;24:417–63.

    CAS  PubMed  Google Scholar 

  84. Deffieux T, Demené C, Tanter M. Functional ultrasound imaging: a new imaging modality for neuroscience. Neuroscience. 2021;474:110–21.

    CAS  PubMed  Google Scholar 

  85. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, et al. Analysis of fMRI time-series revisited. NeuroImage. 1995;2:45–53.

    CAS  PubMed  Google Scholar 

  86. Paxinos G, Franklin KBG. Paxinos and Franklin’s the Mouse Brain in Stereotaxic Coordinates - 5th Edition. 2019. Academic Press. San Diego, USA. https://www.elsevier.com/books/paxinos-and-franklins-the-mouse-brain-in-stereotaxic-coordinates/paxinos/978-0-12-816157-9.

Download references

Acknowledgements

We thank the animal core facility “Buffon” of the University of Paris Cité/Jacques Monod Institute for Animal Care.

Funding

HS had a postdoctoral fellowship award from NIH and AXA. MM had a doctoral fellowship award from Idex Université Paris Cité. This work was supported by the AXA Research Fund (MT).

Author information

Authors and Affiliations

Authors

Contributions

HS and CM equally contributed to the work. They designed the experiments, acquired and analyzed the imaging data along with MM for metabolic phenotyping. FP and CM edited the article. MT and HG equally contributed to the work. They designed the experiments and wrote the article together with HS, CM, MM, FP, and CM, MT and HG supervised the project.

Corresponding authors

Correspondence to Mickaël Tanter or Hirac Gurden.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

All animal experiments were approved by the committee for animal care of Université Paris Cité and by the French Ministry of Research (agreement #17629) under the European directive 2010/63/UE.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimanzad, H., Morisset, C., Montaner, M. et al. Western diet since adolescence impairs brain functional hyperemia at adulthood in mice: rescue by a balanced ω-3:ω-6 polyunsaturated fatty acids ratio. Int J Obes 49, 844–854 (2025). https://doi.org/10.1038/s41366-025-01711-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-025-01711-x

Search

Quick links