Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epidemiology and Population Health

Association between accelerometer-measured irregular sleep duration and longitudinal changes in body mass index in older adults

Abstract

Background

Irregular sleep duration may disrupt circadian rhythms and contribute to metabolic, behavioral, and mood changes, potentially increasing the risk for obesity. However, quantitative data on the relationship between sleep duration irregularity and weight change are lacking.

Methods

In this prospective study, we analyzed data from 10,572 participants (mean age: 63 years) in the UK Biobank who wore accelerometers for a week between 2013 and 2015 and had two body mass index (BMI; kg/m²) measurements on average 2.5 years apart. Irregular sleep duration was assessed by the within-person standard deviation (SD) of 7-night accelerometer-measured sleep duration.

Results

Participants with sleep duration SD > 60 min versus ≤30 min had 0.24 kg/m2 (95% CI: 0.08, 0.40) higher BMI change (kg/m2), standardized to three-year intervals, and 80% (95% CI: 1.28, 2.52) higher risk for incident obesity, after adjusting for sociodemographic factors, shift work, and baseline BMI or follow-up period (p-nonlinearity <0.02 for both). These associations remained consistent after adjusting for lifestyle, comorbidities, and other sleep factors, including sleep duration. Age, sex, baseline BMI, and genetic predisposition to higher BMI (measured with a polygenic risk score) did not appear to modify the association.

Conclusions

Since irregular sleep duration is common, trials of interventions targeting sleep irregularity might lead to new public health strategies that tackle obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

Data availability

This study used data from the UK Biobank under approved Project ID: 85501. UK Biobank data are available upon application to registered researchers (https://www.ukbiobank.ac.uk).

Code availability

The code used to generate the results is available upon request from the first author (SK).

References

  1. World Health Organization. Obesity and overweight; Key facts. 2021. https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed 10 March 2025.

  2. World Obesity Federation. World obesity atlas 2022. London: World Obesity Federation; 2022.

  3. Prospective Studies Collaboration. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96.

    Article  PubMed Central  Google Scholar 

  4. Bluher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98. https://doi.org/10.1038/s41574-019-0176-8.

    Article  PubMed  Google Scholar 

  5. Jensen MD, Ryan DH, Apovian CM, Ard JD, Comuzzie AG, Donato KA, et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and The Obesity Society. Circulation. 2014;129:S102–38. https://doi.org/10.1161/01.cir.0000437739.71477.ee.

    Article  PubMed  Google Scholar 

  6. Chaput JP, McHill AW, Cox RC, Broussard JL, Dutil C, da Costa BGG, et al. The role of insufficient sleep and circadian misalignment in obesity. Nat Rev Endocrinol. 2023;19:82–97. https://doi.org/10.1038/s41574-022-00747-7.

    Article  CAS  PubMed  Google Scholar 

  7. Wu Y, Zhai L, Zhang D. Sleep duration and obesity among adults: a meta-analysis of prospective studies. Sleep Med. 2014;15:1456–62.

    Article  PubMed  Google Scholar 

  8. Markwald RR, Melanson EL, Smith MR, Higgins J, Perreault L, Eckel RH, et al. Impact of insufficient sleep on total daily energy expenditure, food intake, and weight gain. Proc Natl Acad Sci USA. 2013;110:5695–700. https://doi.org/10.1073/pnas.1216951110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sletten TL, Weaver MD, Foster RG, Gozal D, Klerman EB, Rajaratnam SMW, et al. The importance of sleep regularity: a consensus statement of the National Sleep Foundation sleep timing and variability panel. Sleep Health. 2023;9:801–20. https://doi.org/10.1016/j.sleh.2023.07.016.

    Article  PubMed  Google Scholar 

  10. Huang T, Redline S. Cross-sectional and Prospective Associations of Actigraphy-Assessed Sleep Regularity With Metabolic Abnormalities: The Multi-Ethnic Study of Atherosclerosis. Diabetes Care. 2019;42:1422–9. https://doi.org/10.2337/dc19-0596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kianersi S, Wang H, Sofer T, Noordam R, Phillips A, Rutter MK, et al. Association Between Accelerometer-Measured Irregular Sleep Duration and Type 2 Diabetes Risk: A Prospective Cohort Study in the UK Biobank. Diabetes Care. 2024:dc240213. https://doi.org/10.2337/dc24-0213.

  12. Chellappa SL, Vujovic N, Williams JS, Scheer F. Impact of Circadian Disruption on Cardiovascular Function and Disease. Trends Endocrinol Metab. 2019;30:767–79. https://doi.org/10.1016/j.tem.2019.07.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206. https://doi.org/10.1038/nature14177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Brandkvist M, Bjorngaard JH, Odegard RA, Asvold BO, Sund ER, Vie GA. Quantifying the impact of genes on body mass index during the obesity epidemic: longitudinal findings from the HUNT Study. BMJ. 2019;366:l4067. https://doi.org/10.1136/bmj.l4067.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lane JM, Qian J, Mignot E, Redline S, Scheer F, Saxena R. Genetics of circadian rhythms and sleep in human health and disease. Nat Rev Genet. 2023;24:4–20. https://doi.org/10.1038/s41576-022-00519-z.

    Article  CAS  PubMed  Google Scholar 

  16. Fischer D, Klerman EB, Phillips AJK. Measuring sleep regularity: theoretical properties and practical usage of existing metrics. Sleep. 2021;44:zsab103. https://doi.org/10.1093/sleep/zsab103.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chaput JP, Dutil C, Featherstone R, Ross R, Giangregorio L, Saunders TJ, et al. Sleep timing, sleep consistency, and health in adults: a systematic review. Appl Physiol Nutr Metab. 2020;45:S232–47. https://doi.org/10.1139/apnm-2020-0032.

  18. Noordam R, van Heemst D. Habitual sleep quantity and quality and the risk of obesity: What’s the chicken, and what’s the egg? Sleep Med. 2023;110:89–90. https://doi.org/10.1016/j.sleep.2023.07.028.

    Article  PubMed  Google Scholar 

  19. Jaiswal SJ, Quer G, Galarnyk M, Steinhubl SR, Topol EJ, Owens RL. Association of Sleep Duration and Variability With Body Mass Index: Sleep Measurements in a Large US Population of Wearable Sensor Users. JAMA Intern Med. 2020;180:1694–6. https://doi.org/10.1001/jamainternmed.2020.2834.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Patel SR, Hayes AL, Blackwell T, Evans DS, Ancoli-Israel S, Wing YK, et al. The association between sleep patterns and obesity in older adults. Int J Obes. 2014;38:1159–64.

    Article  CAS  Google Scholar 

  21. Sohail S, Yu L, Bennett DA, Buchman AS, Lim AS. Irregular 24-hour activity rhythms and the metabolic syndrome in older adults. Chronobiol Int. 2015;32:802–13. https://doi.org/10.3109/07420528.2015.1041597.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morales‐Ghinaglia N, Fernandez‐Mendoza J. Sleep variability and regularity as contributors to obesity and cardiometabolic health in adolescence. Obesity. 2023;31:597–614.

    Article  PubMed  Google Scholar 

  23. Kobayashi D, Takahashi O, Shimbo T, Okubo T, Arioka H, Fukui T. High sleep duration variability is an independent risk factor for weight gain. Sleep Breath. 2013;17:167–72. https://doi.org/10.1007/s11325-012-0665-7.

    Article  PubMed  Google Scholar 

  24. Zheng NS, Annis J, Master H, Han L, Gleichauf K, Ching JH, et al. Sleep patterns and risk of chronic disease as measured by long-term monitoring with commercial wearable devices in the All of Us Research Program. Nat Med. 2024:1–9. https://doi.org/10.1038/s41591-024-03155-8.

  25. Papandreou C, Bullo M, Diaz-Lopez A, Martinez-Gonzalez MA, Corella D, Castaner O, et al. High sleep variability predicts a blunted weight loss response and short sleep duration a reduced decrease in waist circumference in the PREDIMED-Plus Trial. Int J Obes. 2020;44:330–9. https://doi.org/10.1038/s41366-019-0401-5.

    Article  Google Scholar 

  26. Guyatt GH, Oxman AD, Vist G, Kunz R, Brozek J, Alonso-Coello P, et al. GRADE guidelines: 4. Rating the quality of evidence—study limitations (risk of bias). J Clin Epidemiol. 2011;64:407–15. https://doi.org/10.1016/j.jclinepi.2010.07.017.

    Article  PubMed  Google Scholar 

  27. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015;12:e1001779. https://doi.org/10.1371/journal.pmed.1001779.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Doherty A, Jackson D, Hammerla N, Plotz T, Olivier P, Granat MH, et al. Large Scale Population Assessment of Physical Activity Using Wrist Worn Accelerometers: The UK Biobank Study. PLoS One. 2017;12:e0169649. https://doi.org/10.1371/journal.pone.0169649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rosner B. Percentage points for a generalized ESD many-outlier procedure. Technometrics. 1983;25:165–72.

    Article  Google Scholar 

  30. Physical Activity Expert Working Group for UK Biobank. Physical activity monitor: description and methods. 2016. https://biobank.ndph.ox.ac.uk/ukb/refer.cgi?id=131600. Accessed 10 March 2025.

  31. Ladha C, Ladha K, Jackson D, Olivier P. Shaker table validation of OpenMovement AX3 accelerometer. Ahmerst (ICAMPAM 2013 AMHERST): In: 3rd International Conference on Ambulatory Monitoring of Physical Activity and Movement. Amherst, Massachusetts, USA. 2013.

  32. Frayling T. Return 1862: The Genetics of anthropometric traits? Height, weight, BMI and waist circumference. 2020. https://biobank.ndph.ox.ac.uk/ukb/dset.cgi?id=1862. Accessed 10 March 2025.

  33. Jones SE, Lane JM, Wood AR, van Hees VT, Tyrrell J, Beaumont RN, et al. Genome-wide association analyses of chronotype in 697,828 individuals provides insights into circadian rhythms. Nat Commun. 2019;10:343. https://doi.org/10.1038/s41467-018-08259-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Van Hees VT, Fang Z, Hua Zhao J, Heywood J, Mirkes E, Sabia S, et al. GGIR: Raw Accelerometer Data Analysis. https://CRAN.R-project.org/package=GGIR.

  35. van Hees VT, Sabia S, Anderson KN, Denton SJ, Oliver J, Catt M, et al. A Novel, Open Access Method to Assess Sleep Duration Using a Wrist-Worn Accelerometer. PLoS One. 2015;10:e0142533. https://doi.org/10.1371/journal.pone.0142533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Van Hees VT, Sabia S, Jones SE, Wood AR, Anderson KN, Kivimäki M, et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci Rep. 2018;8:12975. https://doi.org/10.1038/s41598-018-31266-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. UK Biobank. Resource 1421-Body Composition Measurement-Version 1.0. 2011. https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1421. Accessed 10 March 2025.

  38. UK Biobank. Resource 591-Primary Care Linked Data-Version 1.0. 2019. https://biobank.ndph.ox.ac.uk/ukb/refer.cgi?id=591. Accessed 10 March 2025.

  39. Rutten-Jacobs LC, Larsson SC, Malik R, Rannikmae K, consortium M, International Stroke Genetics C, et al. Genetic risk, incident stroke, and the benefits of adhering to a healthy lifestyle: cohort study of 306 473 UK Biobank participants. BMJ. 2018;363:k4168. https://doi.org/10.1136/bmj.k4168.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Walmsley R, Chan S, Smith-Byrne K, Ramakrishnan R, Woodward M, Rahimi K, et al. Reallocation of time between device-measured movement behaviours and risk of incident cardiovascular disease. Br J sports Med. 2022;56:1008–17.

    Article  Google Scholar 

  41. UK Biobank. First occurrence of health outcomes defined by 3-character ICD10 code. 2019. https://biobank.ndph.ox.ac.uk/ukb/refer.cgi?id=593. Accessed 10 March 2025.

  42. Bycroft C, Freeman C, Petkova D, Band G, Elliott LT, Sharp K, et al. The UK Biobank resource with deep phenotyping and genomic data. Nature. 2018;562:203–9. https://doi.org/10.1038/s41586-018-0579-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khera AV, Chaffin M, Zekavat SM, Collins RL, Roselli C, Natarajan P, et al. Whole-Genome Sequencing to Characterize Monogenic and Polygenic Contributions in Patients Hospitalized With Early-Onset Myocardial Infarction. Circulation. 2019;139:1593–602. https://doi.org/10.1161/CIRCULATIONAHA.118.035658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Thompson DJ, Wells D, Selzam S, Peneva I, Moore R, Sharp K, et al. UK Biobank release and systematic evaluation of optimised polygenic risk scores for 53 diseases and quantitative traits. MedRxiv. 2022. https://doi.org/10.1101/2022.06.16.22276246.

    Article  PubMed  PubMed Central  Google Scholar 

  45. VanderWeele TJ, Ding P. Sensitivity Analysis in Observational Research: Introducing the E-Value. Ann Intern Med. 2017;167:268–74. https://doi.org/10.7326/M16-2607.

    Article  PubMed  Google Scholar 

  46. Mathur MB, Ding P, Riddell CA, VanderWeele TJ. Web Site and R Package for Computing E-values. Epidemiology. 2018;29:e45–7. https://doi.org/10.1097/EDE.0000000000000864.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Durrleman S, Simon R. Flexible regression models with cubic splines. Stat Med. 1989;8:551–61. https://doi.org/10.1002/sim.4780080504.

    Article  CAS  PubMed  Google Scholar 

  48. Erik von Elm M, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147:573.

    Article  PubMed  Google Scholar 

  49. Mozaffarian D, Hao T, Rimm EB, Willett WC, Hu FB. Changes in diet and lifestyle and long-term weight gain in women and men. N Engl J Med. 2011;364:2392–404. https://doi.org/10.1056/NEJMoa1014296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Te Morenga L, Mallard S, Mann J. Dietary sugars and body weight: systematic review and meta-analyses of randomised controlled trials and cohort studies. BMJ. 2013;346. https://doi.org/10.1136/bmj.e7492.

  51. Lee IM, Djousse L, Sesso HD, Wang L, Buring JE. Physical activity and weight gain prevention. JAMA. 2010;303:1173–9. https://doi.org/10.1001/jama.2010.312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403. https://doi.org/10.1056/NEJMoa012512.

    Article  PubMed Central  Google Scholar 

  53. Zhu B, Wang Y, Yuan J, Mu Y, Chen P, Srimoragot M, et al. Associations between sleep variability and cardiometabolic health: A systematic review. Sleep Med Rev. 2022:101688. https://doi.org/10.1016/j.smrv.2022.101688.

  54. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, et al. Meta-analysis of genome-wide association studies for height and body mass index in 700000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–9. https://doi.org/10.1093/hmg/ddy271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Magkos F, Sorensen TIA, Raubenheimer D, Dhurandhar NV, Loos RJF, Bosy-Westphal A, et al. On the pathogenesis of obesity: causal models and missing pieces of the puzzle. Nat Metab. 2024;6:1856–65. https://doi.org/10.1038/s42255-024-01106-8.

    Article  PubMed  Google Scholar 

  56. Zhang C, Qin G. Irregular sleep and cardiometabolic risk: Clinical evidence and mechanisms. Front Cardiovasc Med. 2023;10:1059257. https://doi.org/10.3389/fcvm.2023.1059257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354:1435–9. https://doi.org/10.1016/S0140-6736(99)01376-8.

    Article  CAS  PubMed  Google Scholar 

  58. Spiegel K, Tasali E, Leproult R, Van Cauter E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol. 2009;5:253–61. https://doi.org/10.1038/nrendo.2009.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kianersi S, Liu Y, Guasch-Ferré M, Redline S, Schernhammer E, Sun Q, et al. Chronotype, Unhealthy Lifestyle, and Diabetes Risk in Middle-Aged US Women: A Prospective Cohort Study. Ann Internal Med. 2023;176:1330–9.

  60. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity. 2009;17:2100–2. https://doi.org/10.1038/oby.2009.264.

    Article  PubMed  Google Scholar 

  61. Bei B, Wiley JF, Trinder J, Manber R. Beyond the mean: A systematic review on the correlates of daily intraindividual variability of sleep/wake patterns. Sleep Med Rev. 2016;28:108–24. https://doi.org/10.1016/j.smrv.2015.06.003.

    Article  PubMed  Google Scholar 

  62. Reilly JJ, El-Hamdouchi A, Diouf A, Monyeki A, Somda SA. Determining the worldwide prevalence of obesity. Lancet. 2018;391:1773–4. https://doi.org/10.1016/S0140-6736(18)30794-3.

    Article  PubMed  Google Scholar 

  63. Munafò MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. Collider scope: when selection bias can substantially influence observed associations. Int J Epidemiol. 2018;47:226–35. https://doi.org/10.1093/ije/dyx206.

    Article  PubMed  Google Scholar 

  64. Batty GD, Gale CR, Kivimaki M, Deary IJ, Bell S. Comparison of risk factor associations in UK Biobank against representative, general population based studies with conventional response rates: prospective cohort study and individual participant meta-analysis. BMJ. 2020;368:m131. https://doi.org/10.1136/bmj.m131.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017;135:e146–603. https://doi.org/10.1161/CIR.0000000000000485.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the participants and staff of the UK Biobank study for their invaluable contributions of data and support to this research. The authors also acknowledge the support of all funding sources that facilitated this study.

Funding

This work was supported by the National Institutes of Health (R01HL155395) and the UKB project 85501. SK was supported by the American Heart Association Postdoctoral Fellowship (https://doi.org/10.58275/AHA.24POST1188091.pc.gr.190780). RN was supported by a grant from the Dutch Research Council (NWO, Dutch National Research Agenda, Research along routes by consortia, 2021–2026, BioClock: the circadian clock in modern society). MKR was supported by the National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre (BRC) (NIHR203308). This research was supported in part by the Intramural Research Program of the NIH, National Institute on Aging (ZIAAG000530).

Author information

Authors and Affiliations

Authors

Contributions

SK and TH contributed to the conception, investigation, data curation, methodology, and formal analysis of the project. SK prepared the original draft of the manuscript. SK, KSP, HW, TS, RN, MKR, SR, TH reviewed, revised, participated in data interpretation, and approved the final version of the manuscript. TH and SR supervised the work.

Corresponding author

Correspondence to Tianyi Huang.

Ethics declarations

Competing interests

MKR reports receiving consultancy fees from Eli Lilly and has modest stock ownership in GSK, unrelated to this work. The other authors have no conflicts of interest to declare.

Ethics approval and consent to participate

All methods were performed in accordance with the relevant guidelines and regulations. National Health Service North-West Multi-Centre Research Ethics Committee approved the UK Biobank study, and all participants provided written informed consent at baseline.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kianersi, S., Potts, K.S., Wang, H. et al. Association between accelerometer-measured irregular sleep duration and longitudinal changes in body mass index in older adults. Int J Obes 49, 1280–1289 (2025). https://doi.org/10.1038/s41366-025-01768-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-025-01768-8

This article is cited by

Search

Quick links