Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genetics and Epigenetics

Genetic regulation of exosome biogenesis pathway in human adipose and muscle tissue and association with obesity and insulin resistance

Abstract

Background

Animal studies provide evidence of a link between exosome profile, obesity and insulin resistance (IR). Although it is known that exosomes mediate cell-cell communication via their macromolecular cargo, the genetic factors regulating exosomes in humans are largely unknown.

Methods

Leveraging genome-wide expression and genotype data from the African American Genetics of expression and Metabolism (AAGMEx) cohort, we focused on 262 genes in “Exosome pathway”, curated by us, to examine the relationship of the expression of these genes with IR and obesity and tested the role of single nucleotide polymorphisms (SNPs) in determining the variability in the expression of these genes in adipose and muscle tissue. Publicly available gene expression data on European ancestry individuals, genome-wide association studies (GWAS), and bioinformatic approaches were used to validate the role of obesity-associated genetic variants in regulating exosome pathway genes.

Results

Transcript levels of 96 and 15 exosome pathway genes were associated with gluco-metabolic traits (BMI and insulin sensitivity) in adipose and muscle tissue, respectively. Data also suggest transancestral replication of association. The cis-expression quantitative trait (cis-eQTL) analysis of exosome pathway genes identified 45 and 65 cis-eGenes in adipose and muscle tissue, respectively. Expression of a subset of 26 cis-eGenes in adipose was also associated with gluco-metabolic traits. Based on combined SNP-to-gene-linking analysis 35 and 82 adipose expressed exosomal genes (e.g. AHNAK, RAP2A) were identified as target genes for gluco-metabolic trait-associated SNPs in GWAS catalogue and UKBB GWAS datasets, respectively.

Conclusions

The expression of exosome pathway genes in adipose and muscle tissue are associated with obesity and IR, and expression of a subset of these genes are determined by SNPs. Furthermore, analysis of target genes of GWAS identified gluco-metabolic trait-associated SNPs suggests that a subset of these SNPs is potentially involved in causing obesity and related gluco-metabolic diseases, likely by modulating exosome biogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of “exosome pathway” genes are correlated with obesity and gluco-metabolic traits.
Fig. 2: Expression of a subset of obesity and gluco-metabolic traits correlated “exosome-pathway” genes are genetically regulated.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request. Other information on data availability in public databases is included in the “Methods” section.

References

  1. Xourafa G, Korbmacher M, Roden M. Inter-organ crosstalk during development and progression of type 2 diabetes mellitus. Nat Rev Endocrinol. 2024;20:27–49.

    Article  PubMed  Google Scholar 

  2. Hu S, Hu Y, Yan W. Extracellular vesicle-mediated interorgan communication in metabolic diseases. Trends Endocrinol Metab. 2023;34:571–82.

    Article  CAS  PubMed  Google Scholar 

  3. Raposo G, Stahl PD. Extracellular vesicles, genetic programmers. Nat Cell Biol. 2024;26:22–3.

    Article  CAS  PubMed  Google Scholar 

  4. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  5. Whitham M, Parker BL, Friedrichsen M, Hingst JR, Hjorth M, Hughes WE, et al. Extracellular vesicles provide a means for tissue crosstalk during exercise. Cell Metab. 2018;27:237–51.e4.

    Article  CAS  PubMed  Google Scholar 

  6. Jeppesen DK, Fenix AM, Franklin JL, Higginbotham JN, Zhang Q, Zimmerman LJ, et al. Reassessment of exosome composition. Cell. 2019;177:428–45.e18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Welsh JA, Goberdhan DCI, O’Driscoll L, Buzas EI, Blenkiron C, Bussolati B, et al. Minimal information for studies of extracellular vesicles (MISEV2023): from basic to advanced approaches. J Extracell Vesicles. 2024;13:e12404.

    Article  PubMed  PubMed Central  Google Scholar 

  8. van der Pol E, Boing AN, Harrison P, Sturk A, Nieuwland R. Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 2012;64:676–705.

    Article  PubMed  Google Scholar 

  9. Eissa S, Matboli M, Aboushahba R, Bekhet MM, Soliman Y. Urinary exosomal microRNA panel unravels novel biomarkers for diagnosis of type 2 diabetic kidney disease. J Diab Complications. 2016;30:1585–92.

    Article  Google Scholar 

  10. Schlaepfer IR, Nambiar DK, Ramteke A, Kumar R, Dhar D, Agarwal C, et al. Hypoxia induces triglycerides accumulation in prostate cancer cells and extracellular vesicles supporting growth and invasiveness following reoxygenation. Oncotarget. 2015;6:22836–56.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ramteke A, Ting H, Agarwal C, Mateen S, Somasagara R, Hussain A, et al. Exosomes secreted under hypoxia enhance invasiveness and stemness of prostate cancer cells by targeting adherens junction molecules. Mol Carcinog. 2015;54:554–65.

    Article  CAS  PubMed  Google Scholar 

  12. de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H, Posthuma G. et al. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J Extracell Vesicles. 2012;1:18396.

    Article  Google Scholar 

  13. Isaac R, Reis FCG, Ying W, Olefsky JM. Exosomes as mediators of intercellular crosstalk in metabolism. Cell Metab. 2021;33:1744–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kulaj K, Harger A, Bauer M, Caliskan ÖS, Gupta TK, Chiang DM, et al. Adipocyte-derived extracellular vesicles increase insulin secretion through transport of insulinotropic protein cargo. Nat Commun. 2023;14:709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Blandin A, Amosse J, Froger J, Hilairet G, Durcin M, Fizanne L, et al. Extracellular vesicles are carriers of adiponectin with insulin-sensitizing and anti-inflammatory properties. Cell Rep. 2023;42:112866.

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Li L, Zhang Z, Zhang X, Zhu Y, Zhang C, et al. Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance. Cell Metab. 2022;34:1264–79.e8.

    Article  CAS  PubMed  Google Scholar 

  17. Jafari N, Kolla M, Meshulam T, Shafran JS, Qiu Y, Casey AN, et al. Adipocyte-derived exosomes may promote breast cancer progression in type 2 diabetes. Sci Signal. 2021;14:eabj2807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ying W, Gao H, Dos Reis FCG, Bandyopadhyay G, Ofrecio JM, Luo Z, et al. MiR-690, an exosomal-derived miRNA from M2-polarized macrophages, improves insulin sensitivity in obese mice. Cell Metab. 2021;33:781–90.e5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Crewe C, Joffin N, Rutkowski JM, Kim M, Zhang F, Towler DA, et al. An endothelial-to-adipocyte extracellular vesicle axis governed by metabolic state. Cell. 2018;175:695–708.e13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mishra S, Kumar A, Kim S, Su Y, Singh S, Sharma M, et al. A liquid biopsy-based approach to isolate and characterize adipose tissue-derived extracellular vesicles from blood. ACS Nano. 2023;17:10252–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Connolly KD, Wadey RM, Mathew D, Johnson E, Rees DA, James PE. Evidence for adipocyte-derived extracellular vesicles in the human circulation. Endocrinology. 2018;159:3259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Guescini M, Canonico B, Lucertini F, Maggio S, Annibalini G, Barbieri E, et al. Muscle releases alpha-sarcoglycan positive extracellular vesicles carrying miRNAs in the bloodstream. PLoS ONE. 2015;10:e0125094.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rigamonti AE, Bollati V, Pergoli L, Iodice S, De Col A, Tamini S, et al. Effects of an acute bout of exercise on circulating extracellular vesicles: tissue-, sex-, and BMI-related differences. Int J Obes. 2020;44:1108–18.

    Article  CAS  Google Scholar 

  24. Arya SB, Collie SP, Parent CA. The ins-and-outs of exosome biogenesis, secretion, and internalization. Trends Cell Biol. 2024;34:90–108.

    Article  CAS  PubMed  Google Scholar 

  25. Gurung S, Perocheau D, Touramanidou L, Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021;19:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau6977.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Krylova SV, Feng D. The machinery of exosomes: biogenesis, release, and uptake. Int J Mol Sci. 2023;24:1337.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee YJ, Shin KJ, Chae YC. Regulation of cargo selection in exosome biogenesis and its biomedical applications in cancer. Exp Mol Med. 2024;56:877–89.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mathieu M, Martin-Jaular L, Lavieu G, Théry C. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol. 2019;21:9–17.

    Article  CAS  PubMed  Google Scholar 

  30. Guo BB, Bellingham SA, Hill AF. The neutral sphingomyelinase pathway regulates packaging of the prion protein into exosomes. J Biol Chem. 2015;290:3455–67.

    Article  CAS  PubMed  Google Scholar 

  31. Hessvik NP, Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol Life Sci. 2018;75:193–208.

    Article  CAS  PubMed  Google Scholar 

  32. Lark DS, LaRocca TJ. Expression of exosome biogenesis genes is differentially altered by aging in the mouse and in the human brain during Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2022;77:659–63.

    Article  CAS  PubMed  Google Scholar 

  33. Orrù V, Virdis F, Marongiu M, Serra V, Schlessinger D, Devoto M. et al. Effect of genetic factors, age and sex on levels of circulating extracellular vesicles and platelets. Int J Mol Sci. 2023;24:7183.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Riva P, Battaglia C, Venturin M. Emerging role of genetic alterations affecting exosome biology in neurodegenerative diseases. Int J Mol Sci. 2019;20:4113.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang J, Barr MM, Wehman AM. Extracellular vesicles. Genetics. 2024;227:iyae088.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sajuthi SP, Sharma NK, Chou JW, Palmer ND, McWilliams DR, Beal J, et al. Mapping adipose and muscle tissue expression quantitative trait loci in African Americans to identify genes for type 2 diabetes and obesity. Hum Genet. 2016;135:869–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sharma NK, Sajuthi SP, Chou JW, Calles-Escandon J, Demons J, Rogers S, et al. Tissue-specific and genetic regulation of insulin sensitivity-associated transcripts in African Americans. J Clin Endocrinol Metab. 2016;101:1455–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Boston RC, Stefanovski D, Moate PJ, Sumner AE, Watanabe RM, Bergman RN. MINMOD Millennium: a computer program to calculate glucose effectiveness and insulin sensitivity from the frequently sampled intravenous glucose tolerance test. Diab Technol Ther. 2003;5:1003–15.

    Article  CAS  Google Scholar 

  39. Alexander DH, Novembre J, Lange K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009;19:1655–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sharma NK, Chuang Key CC, Civelek M, Wabitsch M, Comeau ME, Langefeld CD, et al. Genetic regulation of enoyl-CoA hydratase domain-containing 3 in adipose tissue determines insulin sensitivity in African Americans and Europeans. Diabetes. 2019;68:1508–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Brotman SM, El-Sayed Moustafa JS, Guan L, Broadaway KA, Wang D, Jackson AU, et al. Adipose tissue eQTL meta-analysis highlights the contribution of allelic heterogeneity to gene expression regulation and cardiometabolic traits. Nat Genet. 2025;57:180–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Civelek M, Wu Y, Pan C, Raulerson CK, Ko A, He A, et al. Genetic regulation of adipose gene expression and cardio-metabolic traits. Am J Hum Genet. 2017;100:428–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Taylor DL, Jackson AU, Narisu N, Hemani G, Erdos MR, Chines PS, et al. Integrative analysis of gene expression, DNA methylation, physiological traits, and genetic variation in human skeletal muscle. Proc Natl Acad Sci USA. 2019;116:10883–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ghosh S, Bouchard C. Considerations on efforts needed to improve our understanding of the genetics of obesity. Int J Obes. 2025;49:206–10.

    Article  Google Scholar 

  45. Gazal S, Weissbrod O, Hormozdiari F, Dey KK, Nasser J, Jagadeesh KA, et al. Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. Nat Genet. 2022;54:827–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Weeks EM, Ulirsch JC, Cheng NY, Trippe BL, Fine RS, Miao J, et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat Genet. 2023;55:1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhai R, Pan L, Yang Z, Li T, Ning Z, Pawitan Y, et al. Genetic and phenotypic links between obesity and extracellular vesicles. Hum Mol Genet. 2022;31:3643–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bouchard C. Genetics of obesity: what we have learned over decades of research. Obesity. 2021;29:802–20.

    Article  PubMed  Google Scholar 

  49. Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23:120–33.

    Article  CAS  PubMed  Google Scholar 

  50. Sinha S, Hoshino D, Hong NH, Kirkbride KC, Grega-Larson NE, Seiki M, et al. Cortactin promotes exosome secretion by controlling branched actin dynamics. J Cell Biol. 2016;214:197–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G, Savina A, et al. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol. 2010;12:19–30.

    Article  CAS  PubMed  Google Scholar 

  52. Valentine JM, Ahmadian M, Keinan O, Abu-Odeh M, Zhao P, Zhou X. et al. β3-Adrenergic receptor downregulation leads to adipocyte catecholamine resistance in obesity. J Clin Invest. 2022;132:e153357.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Dong SS, Duan YY, Zhu RJ, Jia YY, Chen JX, Huang XT, et al. Systematic functional characterization of non-coding regulatory SNPs associated with central obesity. Am J Hum Genet. 2025;112:116–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kim YN, Shin JH, Kyeong DS, Cho SY, Kim MY, Lim HJ, et al. Ahnak deficiency attenuates high-fat diet-induced fatty liver in mice through FGF21 induction. Exp Mol Med. 2021;53:468–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Woo JK, Shin JH, Lee SH, Park HM, Cho SY, Sung YM, et al. Essential role of Ahnak in adipocyte differentiation leading to the transcriptional regulation of Bmpr1α expression. Cell Death Dis. 2018;9:864.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Silva TA, Smuczek B, Valadão IC, Dzik LM, Iglesia RP, Cruz MC, et al. AHNAK enables mammary carcinoma cells to produce extracellular vesicles that increase neighboring fibroblast cell motility. Oncotarget. 2016;7:49998–50016.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the investigators, staff, and participants of the AAGMEx cohort for their valuable contributions. Computations were performed using the Wake Forest University (WFU) High Performance Computing Facility (DEAC HPC). Clinical and genomic studies in the AAGMEx cohort were supported by National Institutes of Health NIH/NIDDK grant R01 DK090111 and R01 DK118243 (PI: SKD). The authors also thank the METSIM, FUSION, and other study investigators for publicly sharing their data.

Author information

Authors and Affiliations

Authors

Contributions

SKD conceptualized and designed the study; SKD collected data; MEC and CDL analyzed the data; SKD, GD, and CDL interpreted results; SKD wrote and finalized the manuscript; all authors read, edited, and approved the final manuscript.

Corresponding author

Correspondence to Swapan K. Das.

Ethics declarations

Competing interests

GD is the founder of LiBiCo LLC, which has no influence or contribution to the work presented in this manuscript. Other authors have no conflict of interest.

Ethics approval and consent to participate

All participants in the AAGMEx cohort provided written informed consent under protocols approved by the Institutional Review Board (IRB) at Wake Forest University Health Sciences (Human Protocol: IRB00015775). The IRB reviewed all research involving humans to ensure that studies are conducted in accordance with the ethical standards put forward by the Belmont Report, and federal, state, and local regulations, and policies governing human research.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Deep, G., Comeau, M.E. et al. Genetic regulation of exosome biogenesis pathway in human adipose and muscle tissue and association with obesity and insulin resistance. Int J Obes (2025). https://doi.org/10.1038/s41366-025-01933-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41366-025-01933-z

Search

Quick links