Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Adipocyte and Cell Biology

Maternal monosodium glutamate exposure disrupts leptin and insulin signaling in the hypothalamus, activating NF-κB and mTOR inflammatory pathways, contributing to metabolic dysfunction in male offspring

Abstract

Background

Maternal nutrition during critical developmental windows is increasingly recognised as a key determinant of offspring health, a concept central to the developmental origins of health and disease paradigm. Monosodium glutamate (MSG), a common food additive and neuroendocrine stimulant, warrants investigation in this context.

Methods

The impact of maternal MSG exposure (120 mg/kg) during gestation and/or lactation on metabolic programming in first-generation male rat offspring. Metabolic, hormonal, and molecular parameters in pups following maternal MSG administration, body weight, food intake, adiposity, glucose homeostasis (insulin sensitivity and resistance), lipid profiles, oxidative stress markers, and inflammatory mediators were measured. Furthermore, we analyzed microRNA expression profiles in relevant tissues.

Results

Maternal MSG exposure resulted in significant metabolic perturbations in offspring. Key findings included a reduced survival index, impaired glucose homeostasis (manifesting as decreased insulin sensitivity and increased insulin resistance), increased body weight, and elevated adiposity. We observed elevated oxidative stress, dyslipidemia, altered lipid peroxidation, and hormonal imbalances. Quantitative PCR analysis revealed altered expression of metabolic and inflammatory genes in both adipocytes and the hypothalamus. MicroRNA expression analysis identified significant alterations in miR-27a, miR-34a, miR-335, and miR-30a, suggesting potential regulatory roles in adipogenesis and metabolic control.

Conclusions

Maternal MSG exposure during gestation and lactation induces profound and adverse metabolic effects in male offspring. The observed alterations in metabolic indices suggest an increased risk of metabolic disease later in life. This study underscores the critical importance of maternal nutrition during sensitive developmental periods and has implications for public health recommendations and nutritional guidelines (Graphical abstract).

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Effect of MSG on oxidative stress markers in plasma.
Fig. 3: Effect of MSG on erythrocyte antioxidant enzymes and oxidized glutathione.
Fig. 4: Effect of MSG on erythrocyte antioxidant status.
Fig. 5: Effect of MSG on plasma metabolic parameters.
Fig. 6: Effect of MSG on plasma lipid profile and fatty acids.
Fig. 7: Effect of MSG on plasma hormone levels.
Fig. 8: Effect of MSG on plasma levels of apolipoproteins, inflammatory markers, and metabolic hormones.
Fig. 9: Effect of MSG on adipocyte cytokine and chemokine levels.
Fig. 10: Effect of MSG on adipocyte protein levels and mRNA expression of regulatory genes.
Fig. 11: Effect of MSG on adipocyte protein levels and mRNA expression of key regulatory genes.
Fig. 12: Effect of MSG on adipocyte mRNA expression of key metabolic and inflammatory genes.
Fig. 13: Effect of MSG on hypothalamic mRNA expression of key regulatory genes.
Fig. 14: Effect of MSG on adipocyte microRNA expression.

Similar content being viewed by others

Data availability

Data are available upon reasonable request to the corresponding author.

References

  1. Soltani Z, Shariatpanahi M, Aghsami M, Owliaey H, Kheradmand A. Investigating the effect of exposure to monosodium glutamate during pregnancy on development of autism in male rat offspring. Food Chem Toxicol. 2024;185:114464.

    Article  CAS  PubMed  Google Scholar 

  2. Kayode OT, Bello JA, Oguntola JA, Kayode AAA, Olukoya DK. The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon. 2023;9:e19675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Van Winkle LJ. Perspective: might maternal dietary monosodium glutamate (MSG) consumption impact pre- and peri-implantation embryos and their subsequent development? Int J Environ Res Public Health. 2022;19:13611.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gowda S, Seibert T, Uli N, Farrell R. Pediatric obesity: endocrinologic and genetic etiologies and management. Curr Cardiovasc Risk Rep. 2019;13:39.

    Article  Google Scholar 

  5. Yadav HM, Jawahar A. Environmental factors and obesity. StatPearls, 2022.

  6. Mishra G, Townsend KL. The metabolic and functional roles of sensory nerves in adipose tissues. Nat Metab. 2023;5:1461–74.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Liu Z, Xiao T, Liu H. Leptin signaling and its central role in energy homeostasis. Front Neurosci. 2023;17. https://doi.org/10.3389/fnins.2023.1238528.

  8. Boucsein A, Kamstra K, Tups A. Central signalling cross-talk between insulin and leptin in glucose and energy homeostasis. J Neuroendocrinol. 2021;33. https://doi.org/10.1111/jne.12944.

  9. Dearden L, Buller S, Furigo IC, Fernandez-Twinn DS, Ozanne SE. Maternal obesity causes fetal hypothalamic insulin resistance and disrupts development of hypothalamic feeding pathways. Mol Metab. 2020;42:101079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Al-Otaibi A, Mansour N, Elabd H, Esmail N. Toxicity of monosodium glutamate intake on different tissues induced oxidative stress: a review. J Med Life Sci. 2022;0:68–81.

    Article  Google Scholar 

  11. Phatak S, Janesick AS, Schug TT, Heindel JJ, Blumberg B. Environmental chemicals and obesity. In: Handbook of Obesity – Volume 1. CRC Press, Taylor & Francis; 2024. p. 441–8.

  12. Shang R, Lee S, Senavirathne G, Lai EC. microRNAs in action: biogenesis, function and regulation. Nat Rev Genet. 2023;24:816–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hernández-Gómez KG, Avila-Nava A, González-Salazar LE, Noriega LG, Serralde-Zúñiga AE, Guizar-Heredia R, et al. Modulation of MicroRNAs and exosomal MicroRNAs after dietary interventions for obesity and insulin resistance: a narrative review. Metabolites. 2023;13:1190.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Park J-H, Choi T-S. Subcutaneous administration of monosodium glutamate to pregnant mice reduces weight gain in pups during lactation. Lab Anim. 2016;50:94–99.

    Article  CAS  PubMed  Google Scholar 

  15. Song W, Chen J, Petrilli A, Liot G, Klinglmayr E, Zhou Y, et al. Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med. 2011;17:377–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Olney JW. Brain lesions, obesity, and other disturbances in mice treated with monosodium glutamate. Science ((1979)). 1969;164:719–21.

    Article  CAS  Google Scholar 

  17. Panjabud P, Kanlayaprasit S, Thongkorn S, Songsritaya K, Lertpeerapan P, Kasitipradit K, et al. Prenatal exposure to bisphenol A disrupts RNA splicing in the prefrontal cortex and promotes behaviors related to autism in offspring. Sci Rep. 2025;15:25996.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on anxiety-like behaviors: a review. Eur J Pharm. 2003;463:3–33.

    Article  CAS  Google Scholar 

  19. Shinohara H, Matsubayashi Y. Analysis of PLETHORA gradient formation by secreted peptides during root development. Morphogen gradients: methods and protocols. Springer, 2018. p. 155–64.

  20. Martins ACP, Borges HE, Garcia RMG, Carniatto SR, Mathias PCF. Monosodium L-glutamate-induced obesity impaired the adrenal medullae activity. Neurosci Res Commun. 2001;28:49–58.

    Article  CAS  Google Scholar 

  21. Diniz YS, Faine LA, Almeida JA, Silva MDP, Ribas BO, Novelli ELB. Toxicity of dietary restriction of fat enriched diets on cardiac tissue. Food Chem Toxicol. 2002;40:1893–9.

    Article  CAS  PubMed  Google Scholar 

  22. Wang R, Yin Y, Li J, Wang H, Lv W, Gao Y, et al. Global stable-isotope tracing metabolomics reveals system-wide metabolic alternations in aging Drosophila. Nat Commun. 2022;13:3518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yang X, Kou T, Wang H, Zhu J, Zhu Z-J, Cai Y. S-adenosylmethionine metabolism shapes CD8+ T cell functions in colorectal cancer. Cancer Metab. 2025;13:23.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G, et al. Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab. 2000;85:2402–10.

    Article  CAS  PubMed  Google Scholar 

  25. Yokoyama H, Emoto M, Fujiwara S, Motoyama K, Morioka T, Komatsu M, et al. Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment in normal range weight and moderately obese type 2 diabetic patients. Diab Care. 2003;26:2426–32.

    Article  CAS  Google Scholar 

  26. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and ?-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985;28:412–9.

    Article  CAS  PubMed  Google Scholar 

  27. Barham D, Trinder P. An improved colour reagent for the determination of blood glucose by the oxidase system. Analyst. 1972;97:142–5.

    Article  CAS  PubMed  Google Scholar 

  28. Trinder P. Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Ann Clin Biochem. 1969;6:24–27.

    Article  CAS  Google Scholar 

  29. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499–502.

    Article  CAS  PubMed  Google Scholar 

  30. Owen JB, Butterfield DA. Measurement of oxidized/reduced glutathione ratio. Methods Mol Biol. 2010;643:269–77.

  31. Griffith OW. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980;106:207–12.

    Article  CAS  PubMed  Google Scholar 

  32. Beutler E, Gelbart T. Plasma glutathione in health and in patients with malignant disease. J Lab Clin Med. 1985;105:581–4.

    CAS  PubMed  Google Scholar 

  33. VanGuilder HD, Vrana KE, Freeman WM. Twenty-five years of quantitative PCR for gene expression analysis. Biotechniques. 2008;44:619–26.

    Article  CAS  PubMed  Google Scholar 

  34. Dweep H, Gretz N. miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods. 2015;12:697–697.

    Article  CAS  PubMed  Google Scholar 

  35. Xie H, Sun L, Lodish HF. Targeting microRNAs in obesity. Expert Opin Ther Targets. 2009;13:1227–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, Kanehisa M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999;27:29–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Biney RP, Djankpa FT, Osei SA, Egbenya DL, Aboagye B, Karikari AA, et al. Effects of in utero exposure to monosodium glutamate on locomotion, anxiety, depression, memory and KCC2 expression in offspring. Int J Dev Neurosci. 2022;82:50–62.

    Article  CAS  PubMed  Google Scholar 

  38. Meex RCR, Blaak EE, van Loon LJC. Lipotoxicity plays a key role in the development of both insulin resistance and muscle atrophy in patients with type 2 diabetes. Obes Rev. 2019;20:1205–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Fazakerley DJ, van Gerwen J, Cooke KC, Duan X, Needham EJ, Díaz-Vegas A, et al. Phosphoproteomics reveals rewiring of the insulin signaling network and multi-nodal defects in insulin resistance. Nat Commun. 2023;14:923.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Haddad M, Esmail R, Khazali H. Reporting the effects of exposure to monosodium glutamate on the regulatory peptides of the hypothalamic-pituitary-gonadal axis. Int J Fertil Steril. 2021;15:246–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Kesherwani R, Bhoumik S, Kumar R, Rizvi SI. Monosodium glutamate even at low dose may affect oxidative stress, inflammation and neurodegeneration in rats. Indian J Clin Biochem. 2024;39:101–9.

    Article  CAS  PubMed  Google Scholar 

  42. Liang X, Yang Q, Zhang L, Maricelli JW, Rodgers BD, Zhu M-J, et al. Maternal high-fat diet during lactation impairs thermogenic function of brown adipose tissue in offspring mice. Sci Rep. 2016;6:34345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kreuz S, Joubert E, Waldmann K-H, Ternes W. Aspalathin, a flavonoid in Aspalathus linearis (rooibos), is absorbed by pig intestine as a C-glycoside. Nutr Res. 2008;28:690–701.

    Article  CAS  PubMed  Google Scholar 

  44. Seow K-M, Lee J-L, Doong M-L, Huang S-W, Hwang J-L, Huang W-J, et al. Human chorionic gonadotropin regulates gastric emptying in ovariectomized rats. J Endocrinol. 2013;216:14.

    Google Scholar 

  45. Wu LL, Russell DL, Wong SL, Chen M, Tsai T-S, St John JC, et al. Mitochondrial dysfunction in oocytes of obese mothers: transmission to offspring and reversal by pharmacological endoplasmic reticulum stress inhibitors. Development. 2015;142:681–91.

    Article  CAS  PubMed  Google Scholar 

  46. Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int J Mol Sci. 2023;24:7898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park W, Wei S, Kim B-S, Kim B, Bae S-J, Chae YC, et al. Diversity and complexity of cell death: a historical review. Exp Mol Med. 2023;55:1573–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shende P, Desai D. Physiological and therapeutic roles of neuropeptide Y on biological functions. Cell biology and translational medicine, volume 7: stem cells and therapy: emerging approaches. Springer, 2020. p. 37–47.

  49. Park C, Kim J, Ko S-B, Choi YK, Jeong H, Woo H, et al. Structural basis of neuropeptide Y signaling through Y1 receptor. Nat Commun. 2022;13:853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Banerjee A, Mukherjee S, Maji BK. Worldwide flavor enhancer monosodium glutamate combined with high lipid diet provokes metabolic alterations and systemic anomalies: an overview. Toxicol Rep. 2021;8:938–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abo Zeid AA, Rowida Raafat I, Ahmed AG. Berberine alleviates monosodium glutamate induced postnatal metabolic disorders associated vascular endothelial dysfunction in newborn rats: possible role of matrix metalloproteinase-1. Arch Physiol Biochem. 2022;128:818–29.

    Article  CAS  PubMed  Google Scholar 

  52. Cho YK, Lee S, Lee J, Doh J, Park J-H, Jung Y-S, et al. Lipid remodeling of adipose tissue in metabolic health and disease. Exp Mol Med. 2023;55:1955–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Su Y, Feng Z, He Y, Hong L, Liu G, Li T, et al. Monosodium L-glutamate and fats change free fatty acid concentrations in intestinal contents and affect free fatty acid receptors express profile in growing pigs. Food Nutr Res. 2019;63. https://doi.org/10.29219/fnr.v63.1444.

  54. Ghaffari-Nasab A, Javani G, Farajdokht F, Alipour MR, Mohaddes G. Chronic stress-induced anxiety-like behavior, hippocampal oxidative, and endoplasmic reticulum stress are reversed by young plasma transfusion in aged adult rats. Iran J Basic Med Sci. 2024;27:114.

    PubMed  PubMed Central  Google Scholar 

  55. Inzani I, Ozanne SE. Programming by maternal obesity: a pathway to poor cardiometabolic health in the offspring. Proc Nutr Soc. 2022;81:227–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Scheidl TB, Brightwell AL, Easson SH, Thompson JA. Maternal obesity and programming of metabolic syndrome in the offspring: searching for mechanisms in the adipocyte progenitor pool. BMC Med. 2023;21:50.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Grilo LF, Diniz MS, Tocantins C, Areia AL, Pereira SP. The endocrine–metabolic axis regulation in offspring exposed to maternal obesity—cause or consequence in metabolic disease programming? Obesities. 2022;2:236–55.

    Article  Google Scholar 

  58. Beam A, Clinger E, Hao L. Effect of diet and dietary components on the composition of the gut microbiota. Nutrients. 2021;13:2795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. María Catalina O, Marta Delia P, Gilda Celina R, Darío M, Verónica L, María Rosa V. Monosodium glutamate affects metabolic syndrome risk factors on obese adult rats: a preliminary study. J Obes Weight Loss Medicat. 2018;4. https://doi.org/10.23937/2572-4010.1510023.

  60. Nauck MA, Quast DR, Wefers J, Meier JJ. GLP-1 receptor agonists in the treatment of type 2 diabetes–state-of-the-art. Mol Metab. 2021;46:101102.

    Article  CAS  PubMed  Google Scholar 

  61. Armstrong J, Hickey G, Diekhans M, Fiddes IT, Novak AM, Deran A, et al. Progressive cactus is a multiple-genome aligner for the thousand-genome era. Nature. 2020;587:246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kurylowicz A. microRNAs in human adipose tissue physiology and dysfunction. Cells. 2021;10:3342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saha PK, Hamilton MP, Rajapakshe K, Putluri V, Felix JB, Masschelin P, et al. miR-30a targets gene networks that promote browning of human and mouse adipocytes. Am J Physiol-Endocrinol Metab. 2020;319:E667–E677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Martinez Calejman C, Trefely S, Entwisle SW, Luciano A, Jung SM, Hsiao W, et al. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat Commun. 2020;11:575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Jiang X, Liu K, Luo P, Li Z, Xiao F, Jiang H, et al. Hypothalamic SLC7A14 accounts for aging-reduced lipolysis in white adipose tissue of male mice. Nat Commun. 2024;15:7948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Numan M, Stolzenberg DS. Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front Neuroendocrinol. 2009;30:46–64.

    Article  CAS  PubMed  Google Scholar 

  67. Champagne FA, Meaney MJ. Transgenerational effects of social environment on variations in maternal care and behavioral response to novelty. Behav Neurosci. 2007;121:1353.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under grant number RGP2/536/46.

Funding

This work was funded by the Deanship of Research and Graduate Studies at King Khalid University through Large Research Project under grant number RGP2/536/46.

Author information

Authors and Affiliations

Authors

Contributions

HHA contributed to the conceptualization, supervision, and funding acquisition. EMEN contributed to the methodology, investigation, and data analysis. NSA-Z contributed to the investigation and resources. HZ contributed to the investigation and resources. HEH contributed to the conceptualization, methodology, investigation, data analysis, and writing of the manuscript.

Corresponding authors

Correspondence to Eman Mohamad El Nashar or Hanan M. A. El Henafy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

The experimental protocol was approved by the Ethical Committee of the Atomic Energy Authority, Egypt (Approval No. 85-23). All methods were performed in accordance with the relevant guidelines and regulations and complied with the “Guide for the Care and Use of Laboratory Animals” published by the U.S. National Institutes of Health (NIH Publication No. 85-23, 1996).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, A.H., El Nashar, E.M., Al-Zahrani, N.S. et al. Maternal monosodium glutamate exposure disrupts leptin and insulin signaling in the hypothalamus, activating NF-κB and mTOR inflammatory pathways, contributing to metabolic dysfunction in male offspring. Int J Obes 50, 238–259 (2026). https://doi.org/10.1038/s41366-025-01941-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41366-025-01941-z

Search

Quick links