Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bariatric Surgery

Insulin resistance modulates gut microbiota and incretin response remodeling after bariatric surgery in severe obesity

Abstract

Background

This study aims to assess the impact of insulin resistance (IR) on gut microbiota (GM) composition, incretin responses, and metabolic outcomes following sleeve gastrectomy (SG) in people with severe obesity who do not have diabetes.

Methods

A prospective single-center study encompassed patients with severe obesity and normal glucose tolerance who underwent SG. Participants were stratified into two cohorts based on the magnitude of their insulin resistance state, as determined by the Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) index: high-IR (Hi-IR; HOMA-IR > 95th percentile) and low-IR (Lo-IR; HOMA-IR <25th percentile). Body composition measurements, biochemical analyses, and microbiota assessments were performed before and 6 months post-surgery. Additionally, the responses to a standardized meal tolerance test (MTT) of glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) were evaluated.

Results

The study cohort consisted of 18 patients (9 with Hi-IR and 9 with Lo-IR), with a mean age of 48.8 ± 9.2 years and a mean body mass index (BMI) of 45.03 ± 4.82 kg/m². Six months post-surgery, the mean percentage of total weight loss (WL) was 26.5 ± 6%, with both groups exhibiting enhanced secretion of GLP-1 and GLP-2 following MTT. At baseline, participants exhibited distinct microbiota profiles; the Hi-IR group showed a higher relative abundance of Prevotella species, which are previously associated with adverse metabolic and inflammatory profiles. Post-surgery, both groups exhibited positive incretin responses and significant modifications in GM composition. Notably, Hi-IR people experienced more pronounced changes in microbial diversity, including increases in Akkermansia and Veillonella species and decreases in Prevotella species. Enhanced GLP-1 and GLP-2 responses were correlated with WL and metabolic improvement, particularly in the Lo-IR population.

Conclusions

These findings underscore the role of GM in metabolic changes and surgical outcomes after SG. Targeting gut microbiota may offer a promising avenue for improving obesity treatment strategies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GLP-1 and GLP-2 responses to MMT at baseline and 6 months in Lo-IR and Hi-IR.
Fig. 2: Baseline gut microbiota abundance and correlations with clinical and hormonal variables.
Fig. 3: Surgical-induced microbiota changes and associations between species and variables related to metabolic health status.
Fig. 4: Gut metagenomic signature predicts intervention success at 5-year follow-up.

Similar content being viewed by others

Data availability

The microbiome data presented in this study are available in the European Nucleotide Archive (ENA) at https://www.ebi.ac.uk/ena/browser/view/PRJEB48776, accession number PRJEB48776. The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Castagneto-Gissey L, Mingrone G. Insulin sensitivity and secretion modifications after bariatric surgery. J Endocrinol Investig. 2012;35:692–8. https://doi.org/10.3275/8470.

    Article  Google Scholar 

  2. Kashyap SR, Bhatt DL, Wolski K, Watanabe RM, Abdul-Ghani M, Abood B, et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36:2175–82.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Cornejo-Pareja I, Molina-Vega M, Gómez-Pérez AM, Damas-Fuentes M, Tinahones FJ. Factors related to weight loss maintenance in the medium-long term after bariatric surgery: a review. J Clin Med. 2021;10:1739.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sabah SA, Haddad EA, Qadhi I, AlMuhaini M, AlAwtan A, AlQabandi OA. et al. Beyond the decade: unveiling long-term weight and co-morbidity outcomes up to 10 years post laparoscopic sleeve gastrectomy. Langenbecks Arch Surg. 2025;410:112.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seeley RJ, Chambers AP, Sandoval DA. The role of gut adaptation in the potent effects of multiple bariatric surgeries on obesity and diabetes. Cell Metab. 2015;21:369–78.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salminen P, Helmio M, Ovaska J, Juuti A, Leivonen M, Peromaa-Haavisto P, et al. Effect of laparoscopic sleeve gastrectomy vs laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity: the SLEEVEPASS randomized clinical trial. JAMA. 2018;319:241–54.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Casella G, Soricelli E, Castagneto-Gissey L, Redler A, Basso N, Mingrone G. Changes in insulin sensitivity and secretion after sleeve gastrectomy. Br J Surg. 2016;103:242–8.

    Article  PubMed  Google Scholar 

  8. Bradley D, Magkos F, Eagon JC, et al. Matched weight loss induced by sleeve gastrectomy or gastric bypass similarly improves metabolic function in obese subjects. Obesity (Silver Spring). 2014;22:2026–31.

    Article  PubMed  Google Scholar 

  9. Romero F, Nicolau J, Flores L, Casamitjana R, Ibarzabal A, Lacy A, et al. Comparable early changes in gastrointestinal hormones after sleeve gastrectomy and Roux-En-Y gastric bypass surgery for morbidly obese type 2 diabetic subjects. Surg Endosc. 2012;26:2231–9.

    Article  PubMed  Google Scholar 

  10. Papamargaritis D, Le Roux CW. Do gut hormones contribute to weight loss and glycaemic outcomes after bariatric surgery?. Nutrients. 2021;13:762.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wilbrink JA, van Avesaat M, Nienhuijs SW, Stronkhorst A, Masclee AAM. Changes in gastrointestinal motility and gut hormone secretion after Roux-en-Y gastric bypass and sleeve gastrectomy for individuals with severe obesity. Clin Obes. 2025;15:e12721.

    Article  PubMed  Google Scholar 

  12. Dang JT, Mocanu V, Park H, Laffin M, Hotte N, Karmali S, et al. Roux-en-Y gastric bypass and sleeve gastrectomy induce substantial and persistent changes in microbial communities and metabolic pathways. Gut Microbes. 2022;14:2050636.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Tremaroli V, Karlsson F, Werling M, Ståhlman M, Kovatcheva-Datchary P, Olbers T, et al. Roux-en-Y gastric bypass and vertical banded gastroplasty induce long-term changes on the human gut microbiome contributing to fat mass regulation. Cell Metab. 2015;22:228–38.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yoon HS, Cho CH, Yun MS, Jang SJ, You HJ, Kim JH, et al. Akkermansia muciniphila secretes a glucagon-like peptide-1-inducing protein that improves glucose homeostasis and ameliorates metabolic disease in mice. Nat Microbiol. 2021;6:563–73.

    Article  PubMed  Google Scholar 

  15. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57:1–24.

    Article  PubMed  Google Scholar 

  16. Anhê FF, Zlitni S, Zhang SY, Choi BSY, Chen CY, Foley KP, et al. Human gut microbiota after bariatric surgery alters intestinal morphology and glucose absorption in mice independently of obesity. Gut. 2023;72:460–71.

    Article  PubMed  Google Scholar 

  17. Damms-Machado A, Mitra S, Schollenberger AE, Kramer KM, Meile T, Königsrainer A, et al. Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption. Biomed Res Int. 2015;2015:806248.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Haghighat N, Ashtary-Larky D, Bagheri R, Aghakhani L, Asbaghi O, Amini M, et al. Preservation of fat-free mass in the first year after bariatric surgery: a systematic review and meta-analysis of 122 studies and 10,758 participants. Surg Obes Relat Dis. 2022;18:964–82.

    Article  PubMed  Google Scholar 

  19. Preda A, Carbone F, Tirandi A, Montecucco F, Liberale L. Obesity phenotypes and cardiovascular risk: from pathophysiology to clinical management. Rev Endocr Metab Disord. 2023;24:901–19.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tanriover C, Copur S, Gaipov A, Ozlusen B, Akcan RE, Kuwabara M, et al. Metabolically healthy obesity: misleading phrase or healthy phenotype?. Eur J Intern Med. 2023;111:5–20.

    Article  PubMed  Google Scholar 

  21. Hjorth MF, Ritz C, Blaak EE, Saris WH, Langin D, Poulsen SK, et al. Pretreatment fasting plasma glucose and insulin modify dietary weight loss success: results from 3 randomized clinical trials. Am J Clin Nutr. 2017;106:499–505.

    Article  PubMed  Google Scholar 

  22. American Diabetes Association. 2. Diagnosis and classification of diabetes: Standards of Care in Diabetes—2024. Diabetes Care. 2024;47:S20–S42.

  23. Gayoso-Diz P, Otero-González A, Rodriguez-Alvarez MX, Gude F, García F, De Francisco A, et al. Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr Disord. 2013;13:47.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Decaro-Fragoso MF, Estrada-Garcia T, Lopez-Saucedo C, Elizalde-Barrera CI. Determining insulin resistance cutoffs in mexican adults: percentile distribution vs. receiver operating characteristic curve analysis. Cureus. 2025;17:e79775.

    PubMed  PubMed Central  Google Scholar 

  25. Ballesteros Pomar MD, Vilarrasa García N, Rubio Herrera MÁ, Barahona MJ, Bueno M, Caixàs A, et al. Abordaje clínico integral SEEN de la obesidad en la edad adulta: resumen ejecutivo. Endocrinol Diabetes Nutr (Engl Ed). 2021;68:130–6.

    PubMed  Google Scholar 

  26. Menzel P, Ng KL, Krogh A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun. 2016;7:11257.

    Article  PubMed  PubMed Central  Google Scholar 

  27. McMurdie PJ, Holmes S. Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. 2013;8:e61217.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Paulson JN, Stine OC, Bravo HC, Pop M. Differential abundance analysis for microbial marker-gene surveys. Nat Methods. 2013;10:1200–2.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Abdelsalam NA, Hegazy SM, Aziz RK. The curious case of Prevotella copri. Vol. 15. Gut Microbes. 2023;15:2249152.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376–81.

    Article  PubMed  Google Scholar 

  31. Moreno-Indias I, Sánchez-Alcoholado L, García-Fuentes E, Cardona F, Queipo-Ortuño MI, Tinahones FJ. Insulin resistance is associated with specific gut microbiota in appendix samples from morbidly obese patients. Am J Transl Res. 2016;8:5672–84.

    PubMed  PubMed Central  Google Scholar 

  32. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hernández-Montoliu L, Rodríguez-Peña MM, Puig R, Astiarraga B, Guerrero-Pérez F, Virgili N, et al. A specific gut microbiota signature is associated with an enhanced GLP-1 and GLP-2 secretion and improved metabolic control in patients with type 2 diabetes after metabolic Roux-en-Y gastric bypass. Front Endocrinol. 2023;14:1181744.

    Article  Google Scholar 

  34. Zhong H, Ren H, Lu Y, Fang C, Hou G, Yang Z, et al. Distinct gut metagenomics and metaproteomics signatures in prediabetics and treatment-naïve type 2 diabetics. EBioMedicine. 2019;47:373–83.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.

    Article  PubMed  Google Scholar 

  36. Allin KH, Tremaroli V, Caesar R, Jensen BAH, Damgaard MTF, Bahl MI, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61:810–20.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Amato A, Baldassano S, Mulè F. GLP2: an underestimated signal for improving glycaemic control and insulin sensitivity. J Endocrinol. 2016;229:R57–R66.

    Article  PubMed  Google Scholar 

  38. Sridhar A, Khan D, Elliott JA, Naughton V, Flatt PR, Irwin N, et al. RYGB surgery has modest effects on intestinal morphology and gut hormone populations in the bypassed biliopancreatic limb but causes reciprocal changes in GLP-2 and PYY in the alimentary limb. PLoS One. 2023;18:e0286062.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ikeda T, Aida M, Yoshida Y, Matsumoto S, Tanaka M, Nakayama J, et al. Alteration in faecal bile acids, gut microbial composition and diversity after laparoscopic sleeve gastrectomy. Br J Surg. 2020;107:1673–85.

    Article  PubMed  Google Scholar 

  40. Farin W, Oñate FP, Plassais J, Bonny C, Beglinger C, Woelnerhanssen B, et al. Impact of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy on gut microbiota: a metagenomic comparative analysis. Surg Obes Relat Dis. 2020;16:852–62.

    Article  PubMed  Google Scholar 

  41. Morán-Ramos S, Soriano-Cortés R, Soto-Fuentes V, Tenorio-Quiroz A, Gervasio-Ortiz E, Rico-Amador D, et al. Role of presurgical gut microbial diversity in Roux-en-Y gastric bypass weight-loss response: a cohort study. Lifestyle Genom. 2024;17:12–21.

    Article  PubMed  Google Scholar 

  42. Murphy R, Tsai P, Jüllig M, Liu A, Plank L, Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27:917–25.

    Article  PubMed  Google Scholar 

  43. Gutiérrez-Repiso C, Moreno-Indias I, Tinahones FJ. Shifts in gut microbiota and their metabolites induced by bariatric surgery. Impact of factors shaping gut microbiota on bariatric surgery outcomes. Rev Endocr Metab Disord. 2021;22:1137–56.

    Article  PubMed  Google Scholar 

  44. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  PubMed  Google Scholar 

  45. Tabasi M, Eybpoosh S, Siadat SD, Elyasinia F, Soroush A, Bouzari S. Modulation of the gut microbiota and serum biomarkers after laparoscopic sleeve gastrectomy: a 1-year follow-up study. Obes Surg. 2021;31:1949–56.

    Article  PubMed  Google Scholar 

  46. Xu Z, Jiang W, Huang W, Lin Y, Chan FKL, Ng SC. Gut microbiota in patients with obesity and metabolic disorders—a systematic review. Genes Nutr. 2022;17:2.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Kayser BD, Prifti E, Lhomme M, Belda E, Dao MC, Aron-Wisnewsky J, et al. Elevated serum ceramides are linked with obesity-associated gut dysbiosis and impaired glucose metabolism. Metabolomics. 2019;15:140.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Samuel BS, Hansen EE, Manchester JK, Coutinho PM, Henrissat B, Fulton R, et al. Genomic and metabolic adaptations of Methanobrevibacter smithii to the human gut. Proc Natl Acad Sci USA. 2007;104:10643–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500:541–6.

    Article  PubMed  Google Scholar 

  50. Kim MH, Yun KE, Kim J, Park E, Chang Y, Ryu S, et al. Gut microbiota and metabolic health among overweight and obese individuals. Sci Rep. 2020;10:19417.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Salehi, M, Peterson, R, Tripathy, D, Pezzica, S, DeFronzo, R, Gastaldelli, A. Insulinotropic effect of endogenous incretins is greater after gastric bypass than sleeve gastrectomy despite diminished beta-cell sensitivity to plasma incretins. Preprint. medRxiv. 2023. https://doi.org/10.1101/2023.03.28.23287755.

Download references

Acknowledgements

The authors thank Sr. Joan Badia for statistical analysis, the Bioinformatics and Biostatistics Unit at the IISPV, and the microbiome data analysis.

Funding

Research conducted in the authors’ laboratory is supported by grants from the ISCIII (PI14/00228, PI17/01503, PI20/00338 and PI23/01133 to JV, PI14/00633, PI17/00915, PI20/0114 and PI23/01289 to SP and PI14/01997; PI17/01556 and PI22/01773 to NV) and the Spanish Ministry of Science and Innovation MCIN/AEI/10.13039/501100011033 (RTI2018-093919-B-100 and PID2021-122480OB-584-100 to SFV), all co-financed by the European Consorcio Centro de Investigación Biomédica en Red (CB07708/0012), ISCIII, Ministerio de Ciencia e Innovación, and by the “La Caixa” Foundation (ID 100010434) under grant agreement LCF/PR/HR20/52400013 (to SFV). SFV and JV also acknowledge support from the Agency for Management of University Research Grants of the Generalitat de Catalunya (2021 SGR 01409, 2021 SGR 0089).

Author information

Authors and Affiliations

Authors

Contributions

RP, M-MR-P, JV, and SP contributed to the conception of the work and wrote the manuscript. LH-M and GLL contributed to the data analysis. BA performed the bioinformatics and statistical analyses. GLL, JB, JT, and AC participated in the study design. Gll, CJ, MP-D, NV, and SFV critically revised the manuscript. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Silvia Pellitero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All participants provided informed consent, and the study was approved by the ethics committee of Germans Trias I Pujol Hospital (PI-14 103). All methods were performed in accordance with the relevant guidelines and regulations.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puig, R., Rodríguez-Peña, MM., Hernández-Montoliu, L. et al. Insulin resistance modulates gut microbiota and incretin response remodeling after bariatric surgery in severe obesity. Int J Obes (2026). https://doi.org/10.1038/s41366-025-01971-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41366-025-01971-7

Search

Quick links