Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

New immunomagnetic separation method to analyze risk factors for Legionella colonization in health care centres

Abstract

Background

It’s pivotal to control the presence of legionella in sanitary structures. So, it’s important to determine the risk factors associated with Legionella colonization in health care centres. In recent years that is why new diagnostic techniques have been developed.

Objective

To evaluate risks factors for Legionella colonization using a novel and more sensitive Legionella positivity index.

Methods

A total of 204 one-litre water samples (102 cold water samples and 102 hot water samples), were collected from 68 different sampling sites of the hospital water system and tested for Legionella spp. by two laboratories using culture, polymerase chain reaction and a method based on immunomagnetic separation (IMS). A Legionella positivity index was defined to evaluate Legionella colonization and associated risk factors in the 68 water samples sites. We performed bivariate analyses and then logistic regression analysis with adjustment of potentially confounding variables. We compared the performance of culture and IMS methods using this index as a new gold standard to determine if rapid IMS method is an acceptable alternative to the use of slower culture method.

Results

Based on the new Legionella positivity index, no statistically significant differences were found neither between laboratories nor between methods (culture, IMS). Positivity was significantly correlated with ambulatory health assistance (p = 0.05) and frequency of use of the terminal points. The logistic regression model revealed that chlorine (p = 0.009) and the frequency of use of the terminal points (p = 0.001) are predictors of Legionella colonization. Regarding this index, the IMS method proved more sensitive (69%) than culture method (65.4%) in hot water samples.

Significance

We showed that the frequency of use of terminal points should be considered when examining environmental Legionella colonization, which can be better evaluated using the provided Legionella positivity index. This study has implications for the prevention of Legionnaires’ disease in hospital settings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hot water temperature range on different terminal points.

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request and with permission from the Hospital Clínico Universitario de Valencia.

References

  1. Kuiper MW, Wullings BA, Akkermans ADL, Beumer RR, Van Der Kooij D. Intracellular proliferation of legionella pneumophila in hartmannella vermiformis in aquatic biofilms grown on plasticized polyvinyl chloride. Appl Environ Microbiol. 2004;70:6826–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Buse HY, Schoen ME, Ashbolt NJ. Legionellae in engineered systems and use of quantitative microbial risk assessment to predict exposure. Water Res. 2012;46:921–33.

    Article  CAS  PubMed  Google Scholar 

  3. Hellinga JR, Gardu~ No RA, Kormish JD, Tanner JR, Khan D, Buchko K. et al. Identification of vacuoles containing extraintestinal differentiated forms of Legionella pneumophila in colonized Caenorhabditis elegans soil nematodes. Microbiologyopen. 2015;4:660–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Alleron L, Khemiri A, Koubar M, Lacombe C, Coquet L, Cosette P, et al. VBNC Legionella pneumophila cells are still able to produce virulence proteins. Water Res. 2013;47:6606–17.

    Article  CAS  PubMed  Google Scholar 

  5. Burillo A, Pedro-Botet ML, Bouza E. Microbiology and epidemiology of Legionnaire’s disease. Infect Dis Clin North Am. 2017;31:7–27.

    Article  PubMed  Google Scholar 

  6. Cunha BA, Burillo A, Bouza E. Legionnaires’ disease. In: The Lancet. Elsevier; 2016. p. 376–85.

  7. Beauté J. The European Legionnaires’ Disease Surveillance Network on behalf of the ELDS. Legionnaires’ disease in Europe, 2011 to 2015. Euro Surveill. 2017;22:171116–1.

  8. Neil K, Berkelman R. Increasing incidence of legionellosis in the United States, 1990–2005: changing epidemiologic trends. Clin Infect Dis. 2008;47:591–9.

    Article  PubMed  Google Scholar 

  9. Dooling KL, Toews K-A, Hicks LA, Garrison LE, Bachaus B, Zansky S, et al. Active bacterial core surveillance for Legionellosis - United States, 2011–2013. MMWR Morb Mortal Wkly Rep. 2015;64:1190–3.

    Article  PubMed  Google Scholar 

  10. Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev. 2015;28:95–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Phin N, Parry-Ford F, Harrison T, Stagg HR, Zhang N, Kumar K, et al. Epidemiology and clinical management of Legionnaires’ disease. Lancet Infect Dis. 2014;14:1011–21.

    Article  PubMed  Google Scholar 

  12. St-Martin G, Uldum S, Mølbak K. Incidence and prognostic factors for Legionnaires’ Disease in Denmark 1993–2006. ISRN Epidemiol. 2013;2013:1–8.

    Article  Google Scholar 

  13. von Baum H, Ewig S, Marre R, Suttorp N, Gonschior S, Welte T, et al. Community-acquired Legionella pneumonia: new insights from the German competence network for community acquired pneumonia. Clin Infect Dis. 2008;46:1356–64.

  14. Beauté JulienBeaute J, Zucs P, de Jong B Legionnaires disease in Europe, 2009–2010. 18, Euro Surveill. 2013.

  15. Cross KE, Mercante JW, Benitez AJ, Brown EW, Diaz MH, Winchell JM. Simultaneous detection of Legionella species and L. anisa, L. bozemanii, L. longbeachae and L. micdadei using conserved primers and multiple probes in a multiplex real-time PCR assay. Diagn Microbiol Infect Dis. 2016;85:295–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu VL, Plouffe JF, Pastoris MC, Stout JE, Schousboe M, Widmer A, et al. Distribution of Legionella species and serogroups isolated by culture in patients with sporadic community-acquired legionellosis: an international collaborative survey. J Infect Dis. 2002;186:127–8.

  17. Rucinski SL, Murphy MP, Kies KD, Cunningham SA, Schuetz AN, Patel R. Eight years of clinical Legionella PCR testing illustrates a seasonal pattern. J Infect Dis. 2018;218:669–70.

    Article  PubMed  Google Scholar 

  18. Ecdc. Legionnaires’ disease Annual Epidemiological Report for 2018. Available from: https://www.ecdc.europa.eu/en/publications-data/legionnaires-disease-annual-epidemiological-report-2018

  19. IIII de SC Weekly epidemiological bulletin (No. 4). 2020. Available from: https://www.isciii.es/QueHacemos/Servicios/VigilanciaSaludPublicaRENAVE/EnfermedadesTransmisibles/Boletines/Documents/Boletin_Epidemiologico_en_red/boletines%20en%20red%202020/IS_N%c2%ba%204-200123-WEB.pdf

  20. National Academies of Sciences E and M. Management of Legionella in Water Systems. Washington, D.C.: National Academies Press; 2019.

  21. Montagna MT, De Giglio O, Cristina ML, Napoli C, Pacifico C, Agodi A, et al. Evaluation of Legionella air contamination in healthcare facilities by different sampling methods: An Italian multicenter study. Int J Environ Res Public Health. 2017.

  22. Straus WL, Plouffe JF, File TM, Lipman HB, Hackman BH, Salstrom S-J, et al. Risk factors for domestic acquisition of Legionnaires disease. Arch Intern Med. 1996;156(Aug):1685.

    Article  CAS  PubMed  Google Scholar 

  23. Alary M, Joly JR. Risk factors for contamination of domestic hot water systems by legionellae. Appl Environ Microbiol. 1991;57:2360–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Borella P, Montagna MT, Romano-Spica V, Stampi S, Stancanelli G, Triassi M, et al. Legionella infection risk from domestic hot water. Emerg Infect Dis. 2004;10:457–64.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rhoads WJ, Ji P, Pruden A, Edwards MA. Water heater temperature set point and water use patterns influence Legionella pneumophila and associated microorganisms at the tap. Microbiome 2015;3:67.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soda EA, Barskey AE, Shah PP, Schrag S, Whitney CG, Arduino MJ, et al. Vital signs: health care-associated legionnaires’ disease surveillance data from 20 states and a large metropolitan area-United States, 2015. Am J Transpl. 2017;17:2215–20.

    Article  CAS  Google Scholar 

  27. Lee TC, Vickers RM, Yu VL, Wagener MM. Growth of 28 Legionella species on selective culture media: a comparative study. J Clin Microbiol. 1993;31:2764–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Allegra S, Berger F, Berthelot P, Grattard F, Pozzetto B, Riffard S. Use of flow cytometry to monitor Legionella viability. Appl Environ Microbiol. 2008;74:7813–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Allegra S, Grattard F, Girardot F, Riffard S, Pozzetto B, Berthelot P. Longitudinal evaluation of the efficacy of heat treatment procedures against Legionella spp. in hospital water systems by using a flow cytometric assay. Appl Environ Microbiol. 2011;77:1268–75.

    Article  CAS  PubMed  Google Scholar 

  30. Bentham R, Whiley H, Bentham R, Whiley H. Quantitative microbial risk assessment and opportunist waterborne infections–are there too many gaps to fill? Int J Environ Res Public Health. 2018;15:1150.

    Article  PubMed Central  Google Scholar 

  31. Van Kenhove E, Dinne K, Janssens A, Laverge J. Overview and comparison of Legionella regulations worldwide. Am J Infect Control. 2019;47:968–78.

    Article  PubMed  Google Scholar 

  32. Codony F, Dinh-Thanh M, Agustí G. Key factors for removing bias in viability PCR-based methods: a review. Curr Microbiol. 2020;77:682–7.

    Article  CAS  PubMed  Google Scholar 

  33. Shevchuk O, Jäger J, Steinert M. Virulence properties of the legionella pneumophila cell envelope. Front Microbiol. 2011;2:74.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Díaz-Flores Á, Montero JC, Castro FJ, Alejandres EM, Bayón C, Solís I, et al. Comparing methods of determining Legionella spp. in complex water matrices. BMC Microbiol. 2015;15:91.

  35. Quero S, Párraga-Niño N, Garcia-Núñez M, Pedro-Botet ML, Gavaldà L, Mateu L, et al. The impact of pipeline changes and temperature increase in a hospital historically colonised with Legionella. Sci Rep. 2021;11:1916.

  36. Proctor CR, Dai D, Edwards MA, Pruden A. Interactive effects of temperature, organic carbon, and pipe material on microbiota composition and Legionella pneumophila in hot water plumbing systems. Microbiome. 2017;5:130.

  37. Gavaldà L, Garcia-Nuñez M, Quero S, Gutierrez-Milla C, Sabrià M. Role of hot water temperature and water system use on Legionella control in a tertiary hospital: An 8-year longitudinal study. Water Res. 2019;149:460–6.

  38. ISO 11731:2017 - Water quality - Enumeration of Legionella [Internet]. 2017 [cited 2019 Jun 26]. Available from: https://www.iso.org/standard/61782.html

  39. Albalat GR, Broch BB, Bono MJ. Method Modification of the Legipid ® Legionella Fast Detection Test Kit. J AOAC Int. 2014;97:1403–9.

    Article  CAS  PubMed  Google Scholar 

  40. Totaro M, Mariotti T, Bisordi C, De Vita E, Valentini P, Costa AL, et al. Evaluation of legionella pneumophila decrease in hot water network of four hospital buildings after installation of electron time flow taps. Water. 2020;12:210.

  41. Nakamura I, Amemura-Maekawa J, Kura F, Kobayashi T, Sato A, Watanabe H, et al. Persistent Legionella contamination of water faucets in a tertiary hospital in Japan. Int J Infect Dis. 2020;93:300–4.

    Article  PubMed  Google Scholar 

  42. Stout JE, Yu VL. Environmental culturing for Legionella: Can we build a better mouse trap? Am J Infect Control. 2010;38:341–3.

    Article  PubMed  Google Scholar 

  43. Stout JE, Muder RR, Mietzner S, Wagener MM, Perri MB, DeRoos K, et al. Role of environmental surveillance in determining the risk of hospital-acquired legionellosis: a national surveillance study with clinical correlations. Infect Control Hosp Epidemiol. 2007;28:818–24.

    Article  PubMed  Google Scholar 

  44. Allen JG, Myatt TA, MacIntosh DL, Ludwig JF, Minegishi T, Stewart JH, et al. Assessing risk of health care-acquired Legionnaires’ disease from environmental sampling: The limits of using a strict percent positivity approach. Am J Infect Control. 2012;40:917–21.

    Article  PubMed  Google Scholar 

  45. Hamilton KA, Haas CN Critical review of mathematical approaches for quantitative microbial risk assessment (QMRA) of: Legionella in engineered water systems: Research gaps and a new framework. 2, Environmental Science: Water Research and Technology. Royal Society of Chemistry; 2016. p. 599–613.

  46. Whiley H, Taylor M. Critical reviews in microbiology Legionella detection by culture and qPCR: Comparing apples and oranges. Crit Rev Microbiol. 2016;42:65–74.

  47. Dietersdorfer E, Kirschner A, Schrammel B, Ohradanova-Repic A, Stockinger H, Sommer R, et al. Starved viable but non-culturable (VBNC) Legionella strains can infect and replicate in amoebae and human macrophages. Water Res. 2018;141:428–38.

    Article  CAS  PubMed  Google Scholar 

  48. Shamsizadeh Z, Ehrampoush MH, Nikaeen M, Ebrahimi AA, Asghari FB. Investigation of hospital water systems contamination to bacterial agents of nosocomial infections. Int J Environ Health Eng. 2020;9:10.

    CAS  Google Scholar 

  49. Lai C-C, Wang C-Y, Hsueh P-R. Co-infections among patients with COVID-19: The need for combination therapy with non-anti-SARS-CoV-2 agents? J Microbiol Immunol Infect. 2020;53:505–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Cebrián F, Montero JC, Fernández PJ. New approach to environmental investigation of an explosive legionnaireś disease outbreak in Spain: Early identification of potential risk sources by rapid Legionella spp immunosensing technique. BMC Infect Dis. 2018;18:696.

Download references

Acknowledgements

The authors would like to thank the staff of the following laboratories for their help in offering us the resources in running the water assays: Ambientalys (Laboratory 1), Iproma (Laboratory 2) and Anticimex. No sources of funding required.

Author information

Authors and Affiliations

Authors

Contributions

RO is the principal investigator of the Public Health and Patient Safety Research Group at the Catholic University of Valencia. He directed the meetings and the preparation of this document. EL is the Co-I of this working group. Both authors contributed to the writing of the text. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Rafael Manuel Ortí-Lucas or Eugenio Luciano.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Ethics approval and consent to participate

This manuscript was approved by the Hospital Clínico Universitario de Valencia (Spain).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortí-Lucas, R.M., Luciano, E. New immunomagnetic separation method to analyze risk factors for Legionella colonization in health care centres. J Expo Sci Environ Epidemiol 32, 744–750 (2022). https://doi.org/10.1038/s41370-022-00421-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41370-022-00421-0

Keywords

Search

Quick links