Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Profile of gut flora in hypertensive patients with insufficient sleep duration

Subjects

Abstract

Recently, the contribution of both insufficient sleep duration and gut microbiome dysbiosis to hypertension (HTN) have been revealed, yet the profile of gut flora in hypertensive patients with insufficient sleep duration remains unknown. To examine this condition, the specific shifts in the fecal microbiome of 53 participants with or without HTN were investigated. The patients were divided into those who slept short (≤6 h) or optimal (6–9 h) duration per day. Comprehensive metagenomic sequencing analysis of fecal specimens was performed in healthy controls with sufficient sleep (s-CTR, n = 10), healthy controls with insufficient sleep (ins-CTR, n = 6), hypertensive patients with sufficient sleep (s-HTN, n = 25), and HTNs complicated by short sleep duration (ins-HTN, n = 12). We found that the α-diversity and β-diversity were quite similar between s-HTN and ins-HTN. Similarities were also observed in the enterotype distribution between s-HTN and ins-HTN subjects. In addition, the enrichment of gut bacteria was evident, such as Fusobacterium mortiferum and Roseburia inulinivorans in ins-HTN subjects. Several functional modules that were distinct between s-HTN and ins-HTN subjects were identified, which were unique to hypertensive patients with insufficient sleep duration. Overall, the data demonstrated that the gut microbial features were largely maintained in hypertensive participants with insufficient sleep duration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gut microbial diversity between hypertensive patients with and without sufficient sleep duration.
Fig. 2: Enterotype profile of s-HTN and ins-HTN.
Fig. 3: Taxonomic annotation and abundance profile of the study cohort.
Fig. 4: Differential genera between hypertensive patients with sufficient and insufficient sleep duration.
Fig. 5: Bacterial species exhibit distinct hypertensive patients with short sleep duration from those with sufficient sleep.
Fig. 6: Profile of microbial functions in hypertensive patients with sufficient or short sleep duration.

Similar content being viewed by others

References

  1. Buysse DJ. Sleep health: can we define it? Does it matter?. Sleep. 2014;37:9–17. https://doi.org/10.5665/sleep.3298.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hirshkowitz M, Whiton K, Albert SM, Alessi C, Bruni O, DonCarlos L, et al. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. Sleep Health. 2015;1:40–3. https://doi.org/10.1016/j.sleh.2014.12.010.

    Article  PubMed  Google Scholar 

  3. Fernandez-Mendoza J, He F, Vgontzas AN, Liao D, Bixler EO. Interplay of objective sleep duration and cardiovascular and cerebrovascular diseases on cause-specific mortality. J Am Heart Assoc. 2019;8:e013043. https://doi.org/10.1161/JAHA.119.01304.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Hao Y, Fan F, Zhang B. The role of microbiome in insomnia, circadian disturbance and depression. Front Psychiatry. 2018;9:669. https://doi.org/10.3389/fpsyt.2018.00669.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Farré N, Farré R, Gozal D. Sleep apnea morbidity: a consequence of microbial-immune cross-talk? Chest. 2018;154:754–9. https://doi.org/10.1016/j.chest.2018.03.001.

    Article  PubMed  Google Scholar 

  6. Broussard JL, Van Cauter E. Disturbances of sleep and circadian rhythms: novel risk factors for obesity. Curr Opin Endocrinol Diabetes Obes. 2016;23:353–9. https://doi.org/10.1097/MED.0000000000000276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Poroyko VA, Carreras A, Khalyfa A, Khalyfa AA, Leone V, Peris E, et al. Chronic sleep disruption alters gut microbiota, induces systemic and adipose tissue inflammation and insulin resistance in mice. Sci Rep. 2016;6:35405. https://doi.org/10.1038/srep35405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang SL, Bai L, Goel N, Bailey A, Jang CJ, Bushman FD, et al. Human and rat gut microbiome composition is maintained following sleep restriction. Proc Natl Acad Sci USA. 2017;114:E1564–71. https://doi.org/10.1073/pnas.1620673114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Triplett J, Ellis D, Braddock A, Roberts E, Ingram K, Perez E, et al. Temporal and region-specific effects of sleep fragmentation on gut microbiota and intestinal morphology in Sprague Dawley rats. Gut Microbes. 2020;11:706–20. https://doi.org/10.1080/19490976.2019.1701352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dashti HS, Scheer FA, Jacques PF, Lamon-Fava S, Ordovás JM. Short sleep duration and dietary intake: epidemiologic evidence, mechanisms, and health implications. Adv Nutr. 2015;6:648–59. https://doi.org/10.3945/an.115.008623.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tobaldini E, Costantino G, Solbiati M, Cogliati C, Kara T, Nobili L, et al. Sleep, sleep deprivation, autonomic nervous system and cardiovascular diseases. Neurosci Biobehav Rev. 2017;74:321–9. https://doi.org/10.1016/j.neubiorev.2016.07.004.

    Article  PubMed  Google Scholar 

  12. Beccuti G, Pannain S. Sleep and obesity. Curr Opin Clin Nutr Metab Care. 2011;14:402–12. https://doi.org/10.1097/MCO.0b013e3283479109.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gangwisch JE. A review of evidence for the link between sleep duration and hypertension. Am J Hypertens. 2014;27:1235–42. https://doi.org/10.1093/ajh/hpu071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang Y, Mei H, Jiang YR, Sun WQ, Song YJ, Liu SJ, et al. Relationship between duration of sleep and hypertension in adults: a meta-analysis. J Clin Sleep Med. 2015;11:1047–56. https://doi.org/10.5664/jcsm.5024.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang H, Zhao X, Li Y, Mao Z, Huo W, Jiang J, et al. Night sleep duration and sleep initiation time with hypertension in Chinese rural population: the Henan Rural Cohort. Eur J Public Health. 2020;30:164–70. https://doi.org/10.1093/eurpub/ckz142.

    Article  PubMed  Google Scholar 

  16. Li J, Yang X, Zhou X, Cai J. The role and mechanism of intestinal flora in blood pressure regulation and hypertension development. Antioxid Redox Signal. 2020. https://doi.org/10.1089/ars.2020.8104.

  17. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM. et al. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65:1331–40. https://doi.org/10.1161/HYPERTENSIONAHA.115.05315.

    Article  CAS  PubMed  Google Scholar 

  18. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G, et al. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5:14. https://doi.org/10.1186/s40168-016-0222-x.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Wang C, Bangdiwala SI, Rangarajan S, Lear SA, AlHabib KF, Mohan V, et al. Association of estimated sleep duration and naps with mortality and cardiovascular events: a study of 116,632 people from 21 countries. Eur Heart J. 2019;40:1620–9. https://doi.org/10.1093/eurheartj/ehy695.

    Article  PubMed  Google Scholar 

  20. Watson NF, Badr MS, Belenky G, Bliwise DL, Buxton OM, Buysse D, et al. Recommended amount of sleep for a healthy adult: a joint consensus statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep. 2015;38:843–4. https://doi.org/10.5665/sleep.4716.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Siezen RJ, Kleerebezem M. The human gut microbiome: are we our enterotypes? Micro Biotechnol. 2011;4:550–3. https://doi.org/10.1111/j.1751-7915.2011.00290.x.

    Article  CAS  Google Scholar 

  22. Huson DH, Auch AF, Qi J, Schuster SC. MEGAN analysis of metagenomic data. Genome Res. 2007;17:377–86. https://doi.org/10.1101/gr.5969107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P, et al. Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe. 2015;17:690–703. https://doi.org/10.1016/j.chom.2015.04.004.

    Article  CAS  PubMed  Google Scholar 

  24. Mansukhani MP, Covassin N, Somers VK. Apneic sleep, insufficient sleep, and hypertension. Hypertension. 2019;73:744–56. https://doi.org/10.1161/HYPERTENSIONAHA.118.11780.

    Article  CAS  PubMed  Google Scholar 

  25. Amitay EL, Werner S, Vital M, Pieper DH, Höfler D, Gierse IJ, et al. Fusobacterium and colorectal cancer: causal factor or passenger? Results from a large colorectal cancer screening study. Carcinogenesis. 2017;38:781–8. https://doi.org/10.1093/carcin/bgx053.

    Article  PubMed  Google Scholar 

  26. George WL, Kirby BD, Sutter VL, Citron DM, Finegold SM. Gram-negative anaerobic bacilli: their role in infection and patterns of susceptibility to antimicrobial agents. II. Little-known Fusobacterium species and miscellaneous genera. Rev Infect Dis. 1981;3:599–626. https://doi.org/10.1093/clinids/3.3.599.

    Article  CAS  PubMed  Google Scholar 

  27. Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett. 2002;217:133–9. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x.

    Article  CAS  PubMed  Google Scholar 

  28. De Preter V, Machiels K, Joossens M, Arijs I, Matthys C, Vermeire S, et al. Faecal metabolite profiling identifies medium-chain fatty acids as discriminating compounds in IBD. Gut. 2015;64:447–58. https://doi.org/10.1136/gutjnl-2013-306423.

    Article  CAS  PubMed  Google Scholar 

  29. Takahashi K, Nishida A, Fujimoto T, Fujii M, Shioya M, Imaeda H, et al. Reduced abundance of butyrate-producing bacteria species in the fecal microbial community in Crohn’s Disease. Digestion. 2016;93:59–65. https://doi.org/10.1159/000441768.

    Article  CAS  PubMed  Google Scholar 

  30. Hering NA, Fromm A, Bücker R, Gorkiewicz G, Zechner E, Högenauer C, et al. Tilivalline- and tilimycin-independent effects of klebsiella oxytoca on tight junction-mediated intestinal barrier impairment. Int J Mol Sci. 2019;20:5595. https://doi.org/10.3390/ijms20225595.

    Article  CAS  PubMed Central  Google Scholar 

  31. Alkhalaf LM, Ryan KS. Biosynthetic manipulation of tryptophan in bacteria: pathways and mechanisms. Chem Biol. 2015;22:317–28. https://doi.org/10.1016/j.chembiol.2015.02.005.

    Article  CAS  PubMed  Google Scholar 

  32. Li C, Chen W, Zhang M, Zhang C, Cao B, Dong B, et al. Modulatory effects of Xihuang Pill on lung cancer treatment by an integrative approach. Biomed Pharmacother. 2020;130:110533. https://doi.org/10.1016/j.biopha.2020.110533.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang X, Xu L, Shen J, Cao B, Cheng T, Zhao T, et al. Metabolic signatures of esophageal cancer: NMR-based metabolomics and UHPLC-based focused metabolomics of blood serum. Biochim Biophys Acta. 2013;1832:1207–16. https://doi.org/10.1016/j.bbadis.2013.03.009.

    Article  CAS  PubMed  Google Scholar 

  34. Miyagi Y, Higashiyama M, Gochi A, Akaike M, Ishikawa T, Miura T, et al. Plasma free amino acid profiling of five types of cancer patients and its application for early detection. PLoS ONE. 2011;6:e24143. https://doi.org/10.1371/journal.pone.0024143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chin JP, McGrath JW, Quinn JP. Microbial transformations in phosphonate biosynthesis and catabolism, and their importance in nutrient cycling. Curr Opin Chem Biol. 2016;31:50–7. https://doi.org/10.1016/j.cbpa.2016.01.010.

    Article  CAS  PubMed  Google Scholar 

  36. Tang J, Yan Y, Zheng JS, Mi J, Li D. Association between erythrocyte membrane phospholipid fatty acids and sleep disturbance in Chinese children and adolescents. Nutrients. 2018;10:344. https://doi.org/10.3390/nu10030344.

    Article  CAS  PubMed Central  Google Scholar 

  37. Song JJ, Ma Z, Wang J, Chen LX, Zhong JC. Gender differences in hypertension. J Cardiovasc Transl Res. 2020;13:47–54. https://doi.org/10.1007/s12265-019-09888-z.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (81670214, 81870308, and 81970271), the Natural Science Foundation of Beijing Municipality (7172080, 7204242), the Capital Medical University Research and Development Fund (1200020102), and the National Nature Cultivation Fund of Beijing Chaoyang Hospital (CHPY202050).

Author information

Authors and Affiliations

Contributions

JL, XY, and JJ conceived the study, directed the project, designed the experiments. JL, JJ, and YD interpreted the results, and wrote the manuscript. PW, KZ, CH, JC, and JZ recruited and collected the clinical details from the subjects. JJ, YD, and JL analyzed the data. XY, JJ, YD, and JL revised the manuscript. JJ and YD contributed equally to this work and are jointly first authors.

Corresponding authors

Correspondence to Xinchun Yang or Jing Li.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, J., Dong, Y., Wang, P. et al. Profile of gut flora in hypertensive patients with insufficient sleep duration. J Hum Hypertens 36, 390–404 (2022). https://doi.org/10.1038/s41371-021-00529-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41371-021-00529-0

This article is cited by

Search

Quick links