Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Systemic immune-inflammation index (SII) may be an effective indicator in predicting the left ventricular hypertrophy for patients diagnosed with hypertension

Abstract

The development of left ventricular hypertrophy (LVH) induced by hypertension is considered a poor prognosis for patients. Similarly, high values of the systemic immune-inflammation index (SII) are correlated with high mortality and morbidity in cardiovascular events. Within this context, our study aimed to detect the association of SII with LVH caused by hypertension. The study included 150 patients diagnosed with hypertension in total and evaluated them as two separate groups with regard to left ventricular mass index (LVMI), including 56 patients (37.3%) with LVH and 94 patients (62.6%) with non-LVH. SII was calculated as platelet × neutrophil/lymphocyte counts. The SII values regarding the group with LVH were detected remarkably higher than those of the non-LVH group (p < 0.001). Additionally, the SII levels of patients with eccentric and concentric hypertrophy were detected higher than those of the normal ventricular geometry and concentric remodeling groups. About curve analysis of the receiver-operating characteristic (ROC), SII values above 869.5 predicted LVH with a sensitivity of 82.1% and specificity of 86.2% (AUC: 0.861; 95% CI: 0.792–0.930; p < 0.001). LVH can be predicted independently through the use of SII in patients diagnosed with hypertension, which may be a simple and easily calculable marker for judging LVH. Moreover, SII can serve as an accurate determinant for the prediction of LVH, in comparison to NLR and PLR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of SII, hs-CRP, NLR, and PLR of the study groups.
Fig. 2: The receiver-operating characteristics (ROC) curve analyses of SII, hs-CRP, NLR, and PLR for the identification of left ventricular hypertrophy.
Fig. 3: The relationship between SII and different left ventricle geometry patterns.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. World Health Organization. (2009). Global health risks: mortality and burden of disease attributable to selected major risks. World Health Organization. https://apps.who.int/iris/handle/10665/44203.

  2. Tin LL, Beevers DG, Lip GY. Hypertension, left ventricular hypertrophy, and sudden death. Curr Cardiol Rep. 2002;4:449–57.

    Article  PubMed  Google Scholar 

  3. Lavie CJ, Milani RV, Shah SB, Gilliland YE, Bernal JA, Dinshaw H, et al. Impact of left ventricular geometry on prognosis-a review of ochsner studies. Ochsner J. 2008;8:11–7.

    PubMed  PubMed Central  Google Scholar 

  4. Verdecchia P, Angeli F, Achilli P, Castellani C, Broccatelli A, Gattobigio R, et al. Echocardiographic left ventricular hypertrophy in hypertension: marker for future events or mediator of events? Curr Opin Cardiol. 2007;22:329–34.

    Article  PubMed  Google Scholar 

  5. Bluemke DA, Kronmal RA, Lima JA, Liu K, Olson J, Burke GL, et al. The relationship of left ventricular mass and geometry to incident cardiovascular events: the MESA (Multi-Ethnic Study of Atherosclerosis) study. J Am Coll Cardiol. 2008;52:2148–55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marvar PJ, Thabet SR, Guzik TJ, Lob HE, McCann LA, Weyand C, et al. Central and peripheral mechanisms of T-lymphocyte activation and vascular inflammation produced by angiotensin II-induced hypertension. Circ Res. 2010;107:263–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carreño JE, Apablaza F, Ocaranza MP, Jalil JE. Hipertrofia cardiaca: eventos moleculares y celulares [Cardiac hypertrophy: molecular and cellular events]. Rev Esp Cardiol. 2006;59:473–86. Spanish

    Article  PubMed  Google Scholar 

  8. Yang R, Chang Q, Meng X, Gao N, Wang W. Prognostic value of Systemic immune-inflammation index in cancer: A meta-analysis. J Cancer. 2018;9:3295–302.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Candemir M, Kiziltunç E, Nurkoç S, Şahinarslan A. Relationship between systemic immune-inflammation index (SII) and the severity of stable coronary artery disease. Angiology. 2021;72:575–81.

    Article  CAS  PubMed  Google Scholar 

  10. Seo M, Yamada T, Morita T, Furukawa Y, Tamaki S, Iwasaki Y, et al. Prognostic value of systemic immune-inflammation index in patients with chronic heart failure. Eur Heart J. 2018;39 suppl 1:P589. https://doi.org/10.1093/eurheartj/ehy564.P589.

  11. Huang J, Zhang Q, Wang R, Ji H, Chen Y, Quan X, et al. Systemic immune-inflammatory index predicts clinical outcomes for elderly patients with acute myocardial infarction receiving percutaneous coronary intervention. Med Sci Monit. 2019;25:9690–701.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Böhm M, et al. Task Force Members. 2013 ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31:1281–357.

    Article  CAS  PubMed  Google Scholar 

  13. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2015;28:1–39. e14

    Article  PubMed  Google Scholar 

  14. Virdis A, Dell’Agnello U, Taddei S. Impact of inflammation on vascular disease in hypertension. Maturitas. 2014;78:179–83.

    Article  CAS  PubMed  Google Scholar 

  15. De Miguel C, Rudemiller NP, Abais JM, Mattson DL. Inflammation and hypertension: new understandings and potential therapeutic targets. Curr hypertension Rep. 2015;17:1–10.

    Google Scholar 

  16. Barrows IR, Ramezani A, Raj DS. Inflammation, immunity, and oxidative stress in hypertension—partners in crime? Adv Chronic Kidney Dis. 2019;26:122–30.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang RM, McNerney KP, Riek AE, Bernal‐Mizrachi C. Immunity and hypertension. Acta Physiologica. 2021;231:e13487.

    Article  CAS  PubMed  Google Scholar 

  18. Agita A, Thaha M. Inflammation, immunity, and hypertension. Acta Med Indonesiana. 2017;49:158–65.

    Google Scholar 

  19. Hulsmans M, Sager HB, Roh JD, Valero-Muñoz M, Houstis NE, Iwamoto Y, et al. Cardiac macrophages promote diastolic dysfunction. J Exp Med. 2018;215:423–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guzik TJ, Skiba DS, Touyz RM, Harrison DG. The role of infiltrating immune cells in dysfunctional adipose tissue. Cardiovascular Res. 2017;113:1009–23.

    Article  CAS  Google Scholar 

  21. Shankar A, Klein BE, Klein R. Relationship between white blood cell count and incident hypertension. Am J hypertension. 2004;17:233–9.

    Article  Google Scholar 

  22. Bermudez EA, Rifai N, Buring J, Manson JE, Ridker PM. Interrelationships among circulating interleukin-6, C-reactive protein, and traditional cardiovascular risk factors in women. Arteriosclerosis, Thrombosis, Vasc Biol. 2002;22:1668–73.

    Article  CAS  Google Scholar 

  23. Guzik TJ, Hoch NE, Brown KA, McCann LA, Rahman A, Dikalov S, et al. Role of the T cell in the genesis of angiotensin II–induced hypertension and vascular dysfunction. The. J Exp Med. 2007;204:2449–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Abais-Battad JM, Lund H, Fehrenbach DJ, Dasinger JH, Mattson DL. Rag1-null Dahl SS rats reveal that adaptive immune mechanisms exacerbate high protein-induced hypertension and renal injury. Am J Physiol-Regulatory, Integr Comp Physiol. 2018;315:R28–35.

    Article  CAS  Google Scholar 

  25. Chan CT, Sobey CG, Lieu M, Ferens D, Kett MM, Diep H, et al. Obligatory role for B cells in the development of angiotensin II–dependent hypertension. Hypertension. 2015;66:1023–33.

    Article  CAS  PubMed  Google Scholar 

  26. Wenzel P, Knorr M, Kossmann S, Stratmann J, Hausding M, Schuhmacher S, et al. Lysozyme M–positive monocytes mediate angiotensin II–induced arterial hypertension and vascular dysfunction. Circulation. 2011;124:1370–81.

    Article  CAS  PubMed  Google Scholar 

  27. Krishnan SM, Ling YH, Huuskes BM, Ferens DM, Saini N, Chan CT, et al. Pharmacological inhibition of the NLRP3 inflammasome reduces blood pressure, renal damage, and dysfunction in salt-sensitive hypertension. Cardiovascular Res. 2019;115:776–87.

    Article  CAS  Google Scholar 

  28. Pedrinelli R, Dell’Omo G, Di Bello V, Pellegrini G, Pucci L, Del Prato S, et al. Low-grade inflammation and microalbuminuria in hypertension. Arteriosclerosis, Thrombosis, Vasc Biol. 2004;24:2414–9.

    Article  CAS  Google Scholar 

  29. Sesso HD, Buring JE, Rifai N, Blake GJ, Gaziano JM, Ridker PM. C-reactive protein and the risk of developing hypertension. Jama. 2003;290:2945–51.

    Article  CAS  PubMed  Google Scholar 

  30. Sunbul M, Gerin F, Durmus E, Kivrak T, Sari I, Tigen K, et al. Neutrophil to lymphocyte and platelet to lymphocyte ratio in patients with dipper versus non-dipper hypertension. Clin Exp Hypertens. 2014;36:217–21.

    Article  PubMed  Google Scholar 

  31. Afşin A, Asoğlu R, Kurtoğlu E, Kaya H. Neutrophil to lymphocyte ratio as a predictor of left ventricular hypertrophy in patients with newly diagnosed hypertension. J Hypertens Manag. 2019;5:042.

    Google Scholar 

  32. Tsioufis C, Dimitriadis K, Antoniadis D, Stefanadis C, Kallikazaros I. Inter-relationships of microalbuminuria with the other surrogates of the atherosclerotic cardiovascular disease in hypertensive subjects. Am J Hypertension. 2004;17:470–6.

    Article  CAS  Google Scholar 

  33. Lieb W, Mayer B, Stritzke J, Doering A, Hense H-W, Loewel H, et al. Association of low-grade urinary albumin excretion with left ventricular hypertrophy in the general population: the MONICA/KORA Augsburg Echocardiographic Substudy. Nephrol Dialysis Transplant. 2006;21:2780–7.

    Article  CAS  Google Scholar 

  34. Hu B, Yang X-R, Xu Y, Sun Y-F, Sun C, Guo W, et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin Cancer Res. 2014;20:6212–22.

    Article  CAS  PubMed  Google Scholar 

  35. Yang YL, Wu CH, Hsu PF, Chen SC, Huang SS, Chan WL, et al. Systemic immune‐inflammation index (SII) predicted clinical outcome in patients with coronary artery disease. Eur J Clin Investig. 2020;50:e13230.

    Article  CAS  Google Scholar 

  36. Erdoğan M, Erdöl MA, Öztürk S, Durmaz T. Systemic immune-inflammation index is a novel marker to predict functionally significant coronary artery stenosis. Biomark Med. 2020;14:1553–61.

    Article  PubMed  Google Scholar 

  37. Dolu AK, Karayiğit O, Ozkan C, Çelik MC, Kalçık M. Relationship between intracoronary thrombus burden and systemic immune-inflammation index in patients with ST-segment elevation myocardial infarction. Acta Cardiol. 2022:1–8.

  38. Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens. 2008;21:500–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Concept: OK, SGN; design: OK, MCÇ; supervision: OK, SGN, MCÇ; materials: OK, SGN; data collection and/or processing: OK, SGN; analysis and/or interpretation: MCÇ, OK; literature search: OK, MCÇ, SGN; writing: OK, MCÇ; critical review: MCÇ, OK.

Corresponding authors

Correspondence to Orhan KARAYİĞİT, Serdar Gökhan NURKOÇ or Muhammet Cihat Çelik.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KARAYİĞİT, O., NURKOÇ, S.G. & Çelik, M.C. Systemic immune-inflammation index (SII) may be an effective indicator in predicting the left ventricular hypertrophy for patients diagnosed with hypertension. J Hum Hypertens 37, 379–385 (2023). https://doi.org/10.1038/s41371-022-00755-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41371-022-00755-0

This article is cited by

Search

Quick links