Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Multiple system biology approaches reveals the role of the hsa-miR-21 in increasing risk of neurological disorders in patients suffering from hypertension

Abstract

Hypertension is a prevalent disease that substantially elevates the risk of neurological disorders such as dementia, stroke and Parkinson’s disease. MicroRNAs (miRNAs) play a critical role in the regulation of gene expression related to brain function and disorders. Understanding the involvement of miRNAs in these conditions could provide new insights into potential therapeutic targets. The main objective of this study is to target and investigate microRNAs (miRNAs) associated with neurological disorders in patients suffering from hypertension. The genes involved in hypertension were identified from various databases including GeneCard, MalaCard, DisGeNet, OMIM & GEO2R. The key gene for hypertension was identified using a systems biology approach. Also, potent phytochemical for hypertension was determined by computer-aided drug-designing approach. Functional miRNAs were determined for the key target gene using miRNet analytics platform by hypergeometric tests. Further, the gene-miRNA interaction was determined and enrichment analysis was done. RPS27A was identified as a key target gene for hypertension. Naringenin showed effective molecular interaction with RPS27A with a binding energy score (−6.28). Further, a list of miRNAs which were targeting brain disorders was determined from miRNet. A gene-miRNA network was constructed using the PSRR tool for Parkinson’s Disease, Autism Spectrum Disorder, Acute Cerebral Infarction, ACTH-Secreting Pituitary Adenoma, & Ependymoma. Further, miRNA 21 & miRNA 16 were found to be associated with four of the neurological disorders. The study identifies specific miRNAs that may serve as potential biomarkers for brain disorders in hypertensive patients. Targeting these miRNAs could open new avenues for therapeutic strategies aimed at mitigating neurological damage in this patient population.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Major diseases associated with hypertension.
Fig. 2: Schematic workflow of the methodology used to explore the effect of Naringenin on brain miRNAs in hypertension.
Fig. 3: MA plot and Volcano plot of differentially expressed genes (DEGs) identified from GEO2R.
Fig. 4: Identification of the key hub gene RPS27A using Cytohubba analysis.
Fig. 5: Protein modelled structure & validation.
Fig. 6: Predicted molecular interaction between RPS27A and Naringenin.
Fig. 7: Regulatory network of miRNAs targeting the RPS27A gene across various brain disorders.
Fig. 8: Naringenin upregulates brain disorder-linked miRNAs, potentially regulating RPS27A.

Similar content being viewed by others

Data availability

The National Center for Biotechnology Information (www.ncbi.nlm.nih.gov) has the data utilized in this investigation.

References

  1. Li Z, Chyr J, Jia Z, Wang L, Hu X, Wu X, et al. Identification of hub genes associated with hypertension and their interaction with miRNA based on weighted gene coexpression network analysis (WGCNA) analysis. Med Sci Monit. 2020;26:e923514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Iqbal AM, Jamal SF. Essential Hypertension. [Updated 2023 Jul 20]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan. Available from: https://www.ncbi.nlm.nih.gov/books/NBK539859/.

  3. Forouzanfar MH, Liu P, Roth GA, Ng M, Biryukov S, Marczak L, et al. Global burden of hypertension and systolic blood pressure of at least 110 to 115 mm Hg, 1990–2015. JAMA. 2017;317:165–82.

    Article  PubMed  Google Scholar 

  4. GBD 2016 Risk Factors Collaborators: “Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016”. Lancet. 2016;390:1345–1422.

  5. Warren HR, Evangelou E, Cabrera CP, Gao H, Ren M, Mifsud B, et al. Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nat Genet. 2017;49:403–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oparil S, Acelajado MC, Bakris GL, Berlowitz DR, Cífková R, Dominiczak AF, et al. Hypertension. Nat Rev Dis Primers. 2018;4:18014.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mills KT, Stefanescu A, He J. The global epidemiology of hypertension. Nat Rev Nephrol. 2020;16:223–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kelly DM, Rothwell PM. Blood pressure and the brain: the neurology of hypertension. Pract Neurol. 2020;20:100–8.

    Article  PubMed  Google Scholar 

  9. Loewenstein D, Rabbat M. Neurological complications of systemic hypertension. Handb Clin Neurol. 2021;177:253–9.

    Article  PubMed  Google Scholar 

  10. Wang JG, Li Y. Primary and secondary prevention of stroke by antihypertensive drug treatment. Expert Rev Neurother. 2004;4:1023–31.

    Article  CAS  PubMed  Google Scholar 

  11. Collins R, Peto R, MacMahon S, Hebert P, Fiebach NH, Eberlein KA, et al. Part 2, Short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet. 1990;335:827–38.

    Article  CAS  PubMed  Google Scholar 

  12. Staessen JA, Gasowski J, Wang JG, Thijs L, Den Hond E, Boissel JP, et al. Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet. 2000;355:865–72.

    Article  CAS  PubMed  Google Scholar 

  13. Turana Y, Shen R, Nathaniel M, Chia YC, Li Y, Kario K. Neurodegenerative diseases and blood pressure variability: A comprehensive review from HOPE Asia. J Clin Hypertens (Greenwich). 2022;24:1204–17.

    Article  PubMed  Google Scholar 

  14. NCD Risk Factor Collaboration. Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19·1 million participants. Lancet. 2017;389:37–55.

    Article  Google Scholar 

  15. Zhai Z, Tao X, Alami MM, Shu S, Wang X. Network pharmacology and molecular docking combined to analyse the molecular and pharmacological mechanism of pinellia ternata in the treatment of hypertension. Curr Issues Mol Biol. 2021;43:65–78.

    Article  PubMed  Google Scholar 

  16. Ventura HO, Lavie CJ. Editorial. Curr Opin Cardiol. 2019;34:329–30.

    Article  PubMed  Google Scholar 

  17. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365:217–23.

    Article  PubMed  Google Scholar 

  18. Di Palo KE, Barone NJ. Hypertension and Heart Failure. Heart Fail Clin. 2020;16:99–106.

    Article  PubMed  Google Scholar 

  19. Fan H, Lu F, Yang A, Dong Y, Liu P, Wang Y. A review on the nonpharmacological therapy of traditional Chinese medicine with antihypertensive effects. Evid Based Complement Altern Med. 2019;2019:1–7.

    Google Scholar 

  20. Pistoia F, Sacco S, Degan D, Tiseo C, Ornello R, Carolei A. Hypertension and stroke: epidemiological aspects and clinical evaluation. High Blood Press Cardiovasc Prev. 2016;23:9–18.

    Article  PubMed  Google Scholar 

  21. Schmieder RE. End organ damage in hypertension. Dtsch Aerzteblatt Online. 2010;107:866–73.

  22. Fagard R, Brguljan J, Staessen J, Thijs L, Derom C, Thomis M, et al. Heritability of conventional and ambulatory blood pressures. A study in twins. Hypertension. 1995;26:919–24.

    Article  CAS  PubMed  Google Scholar 

  23. Guyton AC, Coleman TG, Cowley AW, Scheel KW, Manning RD, Norman RA. Arterial pressure regulation. Overriding dominance of the kidneys in long-term regulation and in hypertension. Am J Med. 1972;52:584–94.

    Article  CAS  PubMed  Google Scholar 

  24. Shaheen N, Shaheen A, Diab RA, Desouki MT. MicroRNAs (miRNAs) role in hypertension: pathogenesis and promising therapeutics. Ann Med Surg (Lond). 2023;86:319–28.

    Article  PubMed  Google Scholar 

  25. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136:215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T. Identification of novel genes coding for small expressed RNAs. Science. 2001;294:853–8.

    Article  CAS  PubMed  Google Scholar 

  27. Yu D-C, Li Q-G, Ding X-W, Ding Y-T. Circulating microRNAs: potential biomarkers for cancer. Int J Mol Sci. 2011;12:2055–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jang JH, Lee T-J. The role of microRNAs in cell death pathways. Yeungnam Univ J Med. 2021;38:107–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Parati G, Kjeldsen S, Coca A, Cushman WC, Wang J. Adherence to single-pill versus free-equivalent combination therapy in hypertension. Hypertension. 2021;77:692–705.

    Article  CAS  PubMed  Google Scholar 

  30. Campana E, Cunha V, Glaveckaite S, Gruev I, Lamirault G, Lehmann E, et al. The use of single-pill combinations as first-line treatment for hypertension: translating guidelines into clinical practice. J Hypertens. 2020;38:2369–77.

    Article  CAS  PubMed  Google Scholar 

  31. Tsioufis K, Kreutz R, Sykara G, van Vugt J, Hassan T. Impact of single-pill combination therapy on adherence, blood pressure control, and clinical outcomes: a rapid evidence assessment of recent literature. J Hypert. 2020;38:1016–28.

    Article  CAS  Google Scholar 

  32. Wang H-B, Yang J. The role of renin-angiotensin aldosterone system related micro-ribonucleic acids in hypertension. Saudi Med J. 2015;36:1151–5.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ma J, Chen X. Advances in pathogenesis and treatment of essential hypertension. Front Cardiovasc Med. 2020;9:1003852.

    Article  Google Scholar 

  34. Delles C, Husi H. Systems biology approach in hypertension research. Methods Mol Biol. 2017;1527:69–79.

    Article  CAS  PubMed  Google Scholar 

  35. Chandran U, Mehendale N, Patil S, Chaguturu R, Patwardhan B. Network pharmacology. Innovative Approaches in Drug Discovery. 2016;127–164. https://doi.org/10.1016/B978-0-12-801814-9.00005-2.

  36. Kibble M, Saarinen N, Tang J, Wennerberg K, Mäkelä S, Aittokallio T. Network pharmacology applications to map the unexplored target space and therapeutic potential of natural products. Nat Prod Rep. 2015;32:1249–66.

    Article  CAS  PubMed  Google Scholar 

  37. Cho D-Y, Kim Y-A, Przytycka TM. Chapter 5: network biology approach to complex diseases. PLoS Comput Biol. 2012;8:e1002820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hopkins AL. Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol. 2008;4:682–90.

    Article  CAS  PubMed  Google Scholar 

  39. Ellingson SR, Smith JC, Baudry J. Polypharmacology and supercomputer-based docking: opportunities and challenges. Mol Simul. 2014;40:848–54.

    Article  CAS  Google Scholar 

  40. Rappaport N, Twik M, Plaschkes I, Nudel R, Iny Stein T, Levitt J, et al. Mala Cards: an amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Res. 2017;45:D877–D887.

    Article  CAS  PubMed  Google Scholar 

  41. Safran M, Dalah I, Alexander J, Rosen N, Iny Stein T, Shmoish M, et al. Gene Cards Version 3: the human gene integrator. Database (Oxford). 2010;2010:baq020.

    Article  PubMed  Google Scholar 

  42. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48:845.

    Google Scholar 

  43. Hamosh A, Scott AF, Amberger JS, Bocchini CA, McKusick VA. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of human genes and genetic disorders. Nucleic Acids Res. 2005;33:514–7.

    Article  Google Scholar 

  44. Clough E, Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, et al. NCBI GEO: archive for gene expression and epigenomics data sets: 23-year update. Nucleic Acids Research. 2024; 52:D138–D144.

    Article  Google Scholar 

  45. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 2021;49:D480–D489.

    Article  Google Scholar 

  47. Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modelling server. Nucleic Acids Res. 2003;31:3381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wlodawer A. Stereochemistry and validation of macromolecular structures. Methods Mol Biol. 2017;1607:595–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Colovos C, Yeates TO. Verification of protein structures: Patterns of non-bonded atomic interactions. Protein Sci. 1993;2:1511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hollingsworth SA, Karplus PA. A fresh look at the Ramachandran plot and the occurrence of standard structures in proteins. Biomol Concepts. 2010;1:271–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem Substance and Compound databases. Nucleic Acids Res. 2016;44:D1202–D1213.

    Article  CAS  PubMed  Google Scholar 

  52. Murail S, de Vries SJ, Rey J, Moroy G, Tufféry P. SeamDock: An Interactive and Collaborative Online Docking Resource to Assist Small Compound Molecular Docking. Front Mol Biosci. 2021;8:716466.

  53. Murail S, de Vries SJ, Rey J, Moroy G, Tufféry P. Seam Dock: an interactive and collaborative online docking resource to assist small compound molecular docking. Front Mol Biosci. 2021;8:716466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chang L, Zhou G, Soufan O, Xia J. miRNet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020;48:W244–W251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu F, Li B, Sun J, Qi J, De Wilde RL, Torres-de la Roche LA, et al. PSRR: a web server for predicting the regulation of miRNAs expression by small molecules. Front Mol Biosci. 2022;9:817294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krishnamurthi RV, Feigin VL, Forouzanfar MH, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of first-ever ischaemic and haemorrhagic stroke during 1990-2010: findings from the Global Burden of Disease Study 2010. Lancet Glob Health. 2013;1:e259–e281. https://doi.org/10.1016/S2214-109X(13)70089-5.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Zhou J, Zhang J. Identification of miRNA-21 and miRNA-24 in plasma as potential early stage markers of acute cerebral infarction. Mol Med Rep. 2014;10:971–6. https://doi.org/10.3892/mmr.2014.2245.

    Article  CAS  PubMed  Google Scholar 

  58. Tsai PC, Liao YC, Wang YS, Lin HF, Lin RT, Juo SHH. Serum microRNA-21 and microRNA-221 as potential biomarkers for cerebrovascular disease. J Vasc Res. 2013;50:346–54. https://doi.org/10.1159/000351767.

    Article  CAS  PubMed  Google Scholar 

  59. Mor M, Nardone S, Sams DS, Elliott E. Hypomethylation of miR-142 promoter and upregulation of microRNAs that target the oxytocin receptor gene in the autism prefrontal cortex. Mol Autism. 2015;6:46 https://doi.org/10.1186/s13229-015-0040-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tysnes OB, Storstein A. Epidemiology of Parkinson’s disease. J Neural Transm. 2017;124:901–5.

    Article  PubMed  Google Scholar 

  61. Beitz JM. Parkinson’s disease: a review. Front Biosci. 2014;6:65–74. https://doi.org/10.2741/s415.

    Article  Google Scholar 

  62. Fu Y, Zhen J, Lu Z. Synergetic neuroprotective effect of docosahexaenoic acid and aspirin in SH-Y5Y by inhibiting miR-21 and activating RXRα and PPARα. DNA Cell Biol. 2017;36:482–9. https://doi.org/10.1089/dna.2017.3643.

    Article  CAS  PubMed  Google Scholar 

  63. Nouri Z, Fakhri S, El-Senduny FF, Sanadgol N, Abd-ElGhani GE, Farzaei MH, et al. On the neuroprotective effects of naringenin: pharmacological targets, signaling pathways, molecular mechanisms, and clinical perspective. Biomolecules. 2019;9:690. https://doi.org/10.3390/biom9110690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mir IA, Tiku AB. Chemopreventive and therapeutic potential of “naringenin,” a flavanone presents in citrus fruits. Nutr Cancer. 2015;67:27–42. https://doi.org/10.1080/01635581.2015.976320.

    Article  CAS  PubMed  Google Scholar 

  65. Zaidun NH, Thent ZC, Latiff AA. Combating oxidative stress disorders with citrus flavonoid: Naringenin. Life Sci. 2018;208:111–22. https://doi.org/10.1016/j.lfs.2018.07.017.

    Article  CAS  PubMed  Google Scholar 

  66. Chen C, Wei YZ, He XM, Li DD, Wang GQ, Li JJ, et al. Naringenin produces neuroprotection against LPS-Induced dopamine neurotoxicity via the inhibition of microglial NLRP3 inflammasome activation. Front Immunol. 2019;10:936. https://doi.org/10.3389/fimmu.2019.00936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The benchwork for this investigation was conducted at the Amity Institute of Biotechnology on the campus of Amity University Uttar Pradesh in Lucknow. The authors would like to thank all of the bioinformatics tools and datasets that were used in this study.

Author information

Authors and Affiliations

Authors

Contributions

SM performed data curation, formal analysis, and wrote the original draft. PG contributed to the methodology, interpretation of results, and participated in reviewing and editing the draft. MT reviewed the final version of the manuscript. PS supervised the study and contributed to the review and editing of the final draft. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mala Trivedi or Prachi Srivastava.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods were performed in accordance with relevant guidelines and regulations. Ethical approval was not required for this study as it involved only computational analyses of publicly available datasets and did not involve human participants or live vertebrates. Therefore, informed consent was not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, S., Garg, P., Trivedi, M. et al. Multiple system biology approaches reveals the role of the hsa-miR-21 in increasing risk of neurological disorders in patients suffering from hypertension. J Hum Hypertens 39, 432–441 (2025). https://doi.org/10.1038/s41371-025-01027-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41371-025-01027-3

Search

Quick links