Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Utility of prenatal Doppler ultrasound to predict neonatal impaired cerebral autoregulation

Abstract

Objective

Determine if abnormal prenatal Doppler ultrasound indices are predictive of postnatal impaired cerebral autoregulation.

Study design

Prospective cohort study of 46 subjects, 240–296 weeks’ gestation. Utilizing near-infrared spectroscopy and receiver-operating characteristic analysis, impaired cerebral autoregulation was defined as >16.5% time spent in a dysregulated state within 96 h of life. Normal and abnormal Doppler indices were compared for perinatal outcomes.

Results

Subjects with abnormal cerebroplacental ratio (n = 12) and abnormal umbilical artery pulsatility index (n = 13) were likely to develop postnatal impaired cerebral autoregulation (p ≤ 0.02). Abnormal cerebroplacental ratio was associated with impaired cerebral autoregulation between 24 and 48 h of life (p = 0.016). These subjects have increased risk for fetal growth restriction, lower birth weight, lower Apgar scores, acidosis, and severe intraventricular hemorrhage and/or death (p < 0.05).

Conclusion

Abnormal cerebroplacental ratio and umbilical artery pulsatility index are associated with postnatal impairment in cerebral autoregulation and adverse outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Brady KM, Lee JK, Kibler KK, Smielewski P, Czosnyka M, Easley RB, et al. Continuous time-domain analysis of cerebrovascular autoregulation using near-infrared spectroscopy. Stroke. 2007;38:2818.

    Article  Google Scholar 

  2. du Plessis AJ. Cerebrovascular injury in premature infants: current understanding and challenges for future prevention. Clin Perinatol. 2008;35:609–41.

    Article  Google Scholar 

  3. du Plessis AJ. The role of systemic hemodynamic disturbances in prematurity-related brain injury. J Child Neurol. 2009;24:1127–40.

    Article  Google Scholar 

  4. Meek J, Tyszczuk L, Elwell C, Wyatt J. Low cerebral blood flow is a risk factor for severe intraventricular haemorrhage. Arch Dis Child Fetal Neonatal Ed. 1999;81:F15–8.

    Article  CAS  Google Scholar 

  5. Van Bel F, Van de Bor M, Stijnen T, Baan J, Ruys JH. Aetiological rôle of cerebral blood-flow alterations in development and extension of peri-intraventricular haemorrhage. Dev Med Child Neurol. 1987;29:601–14.

    Article  Google Scholar 

  6. Perlman JM, McMenamin JB, Volpe JJ. Fluctuating cerebral blood-flow velocity in respiratory-distress syndrome. New Engl J Med. 1983;309:204–9.

    Article  CAS  Google Scholar 

  7. Noori S, Stavroudis TA, Seri I. Systemic and cerebral hemodynamics during the transitional period after premature birth. Clin Perinatol. 2009;36:723–36.

    Article  Google Scholar 

  8. Volpe JJ. Brain injury in the premature infant: overview of clinical aspects, neuropathology, and pathogenesis. Semin Pediatr Neurol. 1998;5:135–51.

    Article  CAS  Google Scholar 

  9. Vesoulis ZA, Mathur AM. Cerebral autoregulation, brain injury, and the transitioning premature infant. Front Pediatr. 2017;5:64.

    Article  Google Scholar 

  10. Alderliesten T, Lemmers PM, Smarius JJ, van de Vosse RE, Baerts W, van Bel F. Cerebral oxygenation, extraction, and autoregulation in very preterm infants who develop peri-intraventricular hemorrhage. J Pediatr. 2013;162:698–704. e692

    Article  Google Scholar 

  11. Gilmore MM, Stone BS, Shepard JA, Czosnyka M, Easley RB, Brady KM. Relationship between cerebrovascular dysautoregulation and arterial blood pressure in the premature infant. J Perinatol. 2011;31:722–9.

    Article  CAS  Google Scholar 

  12. Eriksen VR, Hahn GH, Greisen G. Dopamine therapy is associated with impaired cerebral autoregulation in preterm infants. Acta Paediatr. 2014;103:1221–6.

    Article  CAS  Google Scholar 

  13. Lee JK, Perin J, Parkinson C, O’Connor M, Gilmore MM, Reyes M, et al. Relationships between cerebral autoregulation and markers of kidney and liver injury in neonatal encephalopathy and therapeutic hypothermia. J Perinatol. 2017;37:938–42.

    Article  CAS  Google Scholar 

  14. Burton VJ, Gerner G, Cristofalo E, Chung SE, Jennings JM, Parkinson C, et al. A pilot cohort study of cerebral autoregulation and 2-year neurodevelopmental outcomes in neonates with hypoxic-ischemic encephalopathy who received therapeutic hypothermia. BMC Neurol. 2015;15:209.

    Article  Google Scholar 

  15. Howlett JA, Northington FJ, Gilmore MM, Tekes A, Huisman TA, Parkinson C, et al. Cerebrovascular autoregulation and neurologic injury in neonatal hypoxic-ischemic encephalopathy. Pediatr Res. 2013;74:525–35.

    Article  Google Scholar 

  16. Caicedo A, De Smet D, Naulaers G, Ameye L, Vanderhaegen J, Lemmers P, et al. Cerebral tissue oxygenation and regional oxygen saturation can be used to study cerebral autoregulation in prematurely born infants. Pediatr Res. 2011;69:548–53.

    Article  CAS  Google Scholar 

  17. Liu X, Donnelly J, Czosnyka M, Aries MJH, Brady K, Cardim D, et al. Cerebrovascular pressure reactivity monitoring using wavelet analysis in traumatic brain injury patients: a retrospective study. PLoS Med. 2017;14:e1002348.

    Article  Google Scholar 

  18. Baschat AA. Fetal responses to placental insufficiency: an update. BJOG. 2004;111:1031–41.

    Article  CAS  Google Scholar 

  19. Arbeille P, Maulik D, Fignon A, Stale H, Berson M, Bodard S, et al. Assessment of the fetal PO2 changes by cerebral and umbilical Doppler on lamb fetuses during acute hypoxia. Ultrasound Med Biol. 1995;21:861–70.

    Article  CAS  Google Scholar 

  20. Baschat AA, Gembruch U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet Gynecol. 2003;21:124–7.

    Article  CAS  Google Scholar 

  21. Bahado-Singh RO, Kovanci E, Jeffres A, Oz U, Deren O, Copel J, et al. The Doppler cerebroplacental ratio and perinatal outcome in intrauterine growth restriction. Am J Obstet Gynecol. 1999;180(3 Pt 1):750–6.

    Article  CAS  Google Scholar 

  22. Bakalis S, Akolekar R, Gallo DM, Poon LC, Nicolaides KH. Umbilical and fetal middle cerebral artery Doppler at 30-34 weeks’ gestation in the prediction of adverse perinatal outcome. Ultrasound Obstet Gynecol. 2015;45:409–20.

    Article  CAS  Google Scholar 

  23. DeVore GR. The importance of the cerebroplacental ratio in the evaluation of fetal well-being in SGA and AGA fetuses. Am J Obstet Gynecol. 2015;213:5–15.

    Article  Google Scholar 

  24. Baschat AA, Cosmi E, Bilardo CM, Wolf H, Berg C, Rigano S, et al. Predictors of neonatal outcome in early-onset placental dysfunction. Obstet Gynecol. 2007;109(2 Pt 1):253–61.

    Article  Google Scholar 

  25. Soul JS, Hammer PE, Tsuji M, Saul JP, Bassan H, Limperopoulos C, et al. Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants. Pediatr Res. 2007;61:467–73.

    Article  Google Scholar 

  26. Wu TW, Azhibekov T, Seri I. Transitional hemodynamics in preterm neonates: clinical relevance. Pediatr Neonatol. 2016;57:7–18.

    Article  Google Scholar 

  27. Levene MI, Fawer CL, Lamont RF. Risk factors in the development of intraventricular haemorrhage in the preterm neonate. Arch Dis Child. 1982;57:410–7.

    Article  CAS  Google Scholar 

  28. Hutter D, Kingdom J, Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr. 2010;2010:401323.

    Article  Google Scholar 

  29. Meyer K, Lubo Z. Fetal programming of cardiac function and disease. Reprod Sci. 2007;14:209–16.

    Article  Google Scholar 

  30. Severi FM, Rizzo G, Bocchi C, D’Antona D, Verzuri MS, Arduini D. Intrauterine growth retardation and fetal cardiac function. Fetal Diagn Ther. 2000;15:8–19.

    Article  CAS  Google Scholar 

  31. Zhang L. Prenatal hypoxia and cardiac programming. J Soc Gynecol Investig. 2005;12:2–13.

    Article  Google Scholar 

  32. Gudmundsson S, Tulzer G, Huhta JC, Marsal K. Venous Doppler in the fetus with absent end-diastolic flow in the umbilical artery. Ultrasound Obstet Gynecol. 1996;7:262–7.

    Article  CAS  Google Scholar 

  33. Fouron J-C, Teyssier G, Maroto E, Lessard M, Marquette G. Diastolic circulatory dynamics in the presence of elevated placental resistance and retrograde diastolic flow in the umbilical artery: a Doppler echographic study in lambs. Am J Obstet Gynecol. 1991;164(1, Part1):195–203.

    Article  CAS  Google Scholar 

  34. Wladimiroff JW, Tonge HM, Stewart PA. Doppler ultrasound assessment of cerebral blood flow in the human fetus. Br J Obstet Gynaecol. 1986;93:471–5.

    Article  CAS  Google Scholar 

  35. Rizzo G, Arduini D. Fetal cardiac function in intrauterine growth retardation. Am J Obstet Gynecol. 1991;165(4 Pt 1):876–82.

    Article  CAS  Google Scholar 

  36. Hooper SB, Te Pas AB, Lang J, van Vonderen JJ, Roehr CC, Kluckow M, et al. Cardiovascular transition at birth: a physiological sequence. Pediatr Res. 2015;77:608–14.

    Article  Google Scholar 

  37. Noori S, Seri I. Hemodynamic antecedents of peri/intraventricular hemorrhage in very preterm neonates. Semin Fetal Neonatal Med. 2015;20:232–7.

    Article  Google Scholar 

  38. Kluckow M, Evans N. Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2000;82:F188–94.

    Article  CAS  Google Scholar 

  39. Kluckow M. Low systemic blood flow and pathophysiology of the preterm transitional circulation. Early Hum Dev. 2005;81:429–37.

    Article  Google Scholar 

  40. Hunt RW, Evans N, Rieger I, Kluckow M. Low superior vena cava flow and neurodevelopment at 3 years in very preterm infants. J Pediatr. 2004;145:588–92.

    Article  Google Scholar 

  41. Flood K, Unterscheider J, Daly S, Geary MP, Kennelly MM, McAuliffe FM, et al. The role of brain sparing in the prediction of adverse outcomes in intrauterine growth restriction: results of the multicenter PORTO Study. Am J Obstet Gynecol. 2014;211:288.e281–5.

    Article  Google Scholar 

  42. Soregaroli M, Bonera R, Danti L, Dinolfo D, Taddei F, Valcamonico A, et al. Prognostic role of umbilical artery Doppler velocimetry in growth-restricted fetuses. J Matern Fetal Neonatal Med. 2002;11:199–203.

    Article  CAS  Google Scholar 

  43. Baschat AA, Gembruch U, Viscardi RM, Gortner L, Harman CR. Antenatal prediction of intraventricular hemorrhage in fetal growth restriction: what is the role of Doppler? Ultrasound Obstet Gynecol. 2002;19:334–9.

    Article  CAS  Google Scholar 

  44. Odibo AO, Riddick C, Pare E, Stamilio DM, Macones GA. Cerebroplacental Doppler ratio and adverse perinatal outcomes in intrauterine growth restriction: evaluating the impact of using gestational age-specific reference values. J Ultrasound Med. 2005;24:1223–8.

    Article  Google Scholar 

  45. Ebbing C, Rasmussen S, Kiserud T. Middle cerebral artery blood flow velocities and pulsatility index and the cerebroplacental pulsatility ratio: longitudinal reference ranges and terms for serial measurements. Ultrasound Obstet Gynecol. 2007;30:287–96.

    Article  CAS  Google Scholar 

  46. Bada HS, Hajjar W, Chua C, Sumner DS. Noninvasive diagnosis of neonatal asphyxia and intraventricular hemorrhage by Doppler ultrasound. J Pediatr. 1979;95(5 Pt 1):775–9.

    Article  CAS  Google Scholar 

  47. Rhee CJ, Fraser CD, Kibler K, Easley RB, Andropoulos DB, Czosnyka M, et al. The ontogeny of cerebrovascular pressure autoregulation in premature infants. J Perinatol. 2014;34:926–31.

    Article  CAS  Google Scholar 

  48. Steinmeier R, Bauhuf C, Hubner U, Bauer RD, Fahlbusch R, Laumer R, et al. Slow rhythmic oscillations of blood pressure, intracranial pressure, microcirculation, and cerebral oxygenation. Dynamic interrelation and time course in humans. Stroke. 1996;27:2236–43.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Dr. Rose Viscardi and Dr. Natalie Davis at the University of Maryland (Division of Neonatology) for their valuable expertise and guidance throughout this study. Funding for this study was provided by a grant from the Mentored Population and Clinical Research Program of the American Heart Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sruthi R. Polavarapu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polavarapu, S.R., Fitzgerald, G.D., Contag, S. et al. Utility of prenatal Doppler ultrasound to predict neonatal impaired cerebral autoregulation. J Perinatol 38, 474–481 (2018). https://doi.org/10.1038/s41372-018-0050-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41372-018-0050-x

This article is cited by

Search

Quick links