Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transfusion prevention using erythropoietin, parenteral sucrose iron, and fewer phlebotomies in infants born at ≤30 weeks gestation at a high altitude center: a 10-year experience

Abstract

Introduction

Red blood cell transfusions in infants born at ≤30 weeks gestation are frequent. Erythropoietin therapy reduces transfusions. An increase in hematocrit is an adaptive response at high altitudes but a guaranteed source of iron is necessary for adequate erythropoiesis.

Methods

A retrospective cohort study was done to compare red blood cell transfusion practices of the 2019 EpicLatino (EPIC) Latin America network database with a single unit at 2650 m above sea level (LOCAL). The data from LOCAL for three time periods were compared over 10 years based on changes in erythropoietin dose and fewer phlebotomies. The number of cases that received transfusions and the total number of transfusions required were compared. Adjustments were made for known risk factors using a multivariate regression analysis.

Results

Two hundred and twenty-one cases in LOCAL and 382 cases from EPIC were included. Overall basic demographic characteristics were similar. In EPIC a significantly higher rate of infection (28% vs. 15%) and outborn (10% vs. 1%) was found, but less necrotizing enterocolitis (9% vs. 15%) and use of prenatal steroids (62% vs. 93%) than LOCAL (p < 0.05). EPIC patients received more transfusions (2.6 ± 3 vs. 0.6 ± 1 times) than LOCAL (p < 0.001) and received them significantly more frequently (61% vs. 25%). Within the LOCAL time periods, no statistically significant differences were found other than the need for transfusions (1st 32%, 2nd 28%, 3rd 9%, p = 0.005) and the average number of transfusions (1st 0.8 ± 1.6, 2nd 0.7 ± 1.3, 3rd 0.1 ± 0.3, p = 0.004). These differences remained significant after multivariate regression analysis and adjusting for risk variables.

Conclusion

The combination of erythropoietin, parenteral sucrose iron, fewer phlebotomies during the first 72 h, and delayed umbilical cord clamping seem to reduce red blood cell transfusion needs. This can be extremely important in high altitude units where higher hematocrit is desirable but may also be valuable at sea level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: On the Y1 axis, mean pretransfusion hemoglobin (PrHb) in severely compromised babies (dark/blue columns) and in stable babies (light/red columns) is shown.
Fig. 2: Pretransfusion guidelines reported by the directors of the different EPIC units 2019 organized by values reported for severely compromised infants.

Similar content being viewed by others

References

  1. Howarth C, Banerjee J, Aladangady N. Red blood cell transfusion in preterm infants: current evidence and controversies. Neonatology. 2018;114:7–16.

    Article  PubMed  Google Scholar 

  2. Shanmugha Priya RA, Krishnamoorthy R, Panicker VK, Ninan B. Transfusion support in preterm neonates <1500 g and/or <32 weeks in a tertiary care center: a descriptive study. Asian J Transfus Sci. 2018;12:34–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ohlsson A, Aher SM. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst Rev. 2017;11:CD004863.

    PubMed  Google Scholar 

  4. Ohlsson A, Aher SM. Early erythropoiesis-stimulating agents in preterm or low birth weight infants. Cochrane Database Syst Rev. 2020;2:CD004863.

    PubMed  Google Scholar 

  5. Aher SM, Ohlsson A. Late erythropoiesis-stimulating agents to prevent red blood cell transfusion in preterm or low birth weight infants. Cochrane Database Syst Rev. 2019;2:CD004868.

    PubMed  Google Scholar 

  6. Juul SE, Vu PT, Comstock BA, Wadhawan R, Mayock DE, Courtney SE, et al. Effect of high-dose erythropoietin on blood transfusions in extremely low gestational age neonates: post hoc analysis of a randomized clinical trial. JAMA Pediatr. 2020;174:933–43.

    Article  PubMed  Google Scholar 

  7. Jain D, D’Ugard C, Bancalari E, Claure N. Cerebral oxygenation in preterm infants receiving transfusion. Pediatr Res. 2019;85:786–9.

    Article  PubMed  Google Scholar 

  8. Andersen CC, Karayil SM, Hodyl NA, Stark MJ. Early red cell transfusion favourably alters cerebral oxygen extraction in very preterm newborns. Arch Dis Child Fetal Neonatal Ed. 2015;100:F433–5.

    Article  CAS  PubMed  Google Scholar 

  9. Ree IMC, Lopriore E. Updates in neonatal hematology: causes, risk factors, and management of anemia and thrombocytopenia. Hematol Oncol Clin North Am. 2019;33:521–32.

    Article  PubMed  Google Scholar 

  10. Windsor JS, Rodway GW. Heights and haematology: the story of haemoglobin at altitude. Postgrad Med J. 2007;83:148–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zubieta-Calleja GR, Paulev PE, Zubieta-Calleja L, Zubieta-Castillo G. Altitude adaptation through hematocrit changes. J Physiol Pharmacol. 2007;58:811–8.

    PubMed  Google Scholar 

  12. Dirren H, Logman MH, Barclay DV, Freire WB. Altitude correction for hemoglobin. Eur J Clin Nutr. 1994;48:625–32.

    CAS  PubMed  Google Scholar 

  13. Muckenthaler MU, Rivella S, Hentze MW, Galy B. A red carpet for iron metabolism. Cell. 2017;168:344–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pollak A, Hayde M, Hayn M, Herkner K, Lombard KA, Lubec G, et al. Effect of intravenous iron supplementation on erythropoiesis in erythropoietin-treated premature infants. Pediatrics. 2001;107:78–85.

    Article  CAS  PubMed  Google Scholar 

  15. Lopriore E. Updates in red blood cell and platelet transfusions in preterm neonates. Am J Perinatol. 2019;36:S37–40.

    Article  PubMed  Google Scholar 

  16. Kaltwasser JP, Gottschalk R. Erythropoietin and iron. Kidney Int Suppl. 1999;69:S49–56.

    Article  CAS  PubMed  Google Scholar 

  17. Naude S, Clijsen S, Naulaers G, Daniels H, Vanhole C, Devlieger H. Iron supplementation in preterm infants: a study comparing the effect and tolerance of a Fe2+ and a nonionic FeIII compound. J Clin Pharmacol. 2000;40:1447–51.

    Article  CAS  PubMed  Google Scholar 

  18. Franz AR, Mihatsch WA, Sander S, Kron M, Pohlandt F. Prospective randomized trial of early versus late enteral iron supplementation in infants with a birth weight of less than 1301 grams. Pediatrics. 2000;106:700–6.

    Article  CAS  PubMed  Google Scholar 

  19. Papadopoulos M, Patel D, Korologou-Linden R, Goto E, Soondrum K, Fell JME, et al. Safety and efficacy of parenteral iron in children with inflammatory bowel disease. Br J Clin Pharmacol. 2018;84:694–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Auerbach M, Macdougall I. The available intravenous iron formulations: history, efficacy, and toxicology. Hemodial Int. 2017;21 Suppl 1:S83–92.

    Article  PubMed  Google Scholar 

  21. Lemyre B, Sample M, Lacaze-Masmonteil T. Canadian paediatric society FtaNC Minimizing blood loss and the need for transfusions in very premature infants. Paediatr Child Health. 2015;20:451–62.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Counsilman CE, Heeger LE, Tan R, Bekker V, Zwaginga JJ, Te Pas AB, et al. Iatrogenic blood loss in extreme preterm infants due to frequent laboratory tests and procedures. J Matern Fetal Neonatal Med. 2019:1–6.

  23. Fogarty M, Osborn DA, Askie L, Seidler AL, Hunter K, Lui K, et al. Delayed vs early umbilical cord clamping for preterm infants: a systematic review and meta-analysis. Am J Obstet Gynecol. 2018;218:1–18.

    Article  PubMed  Google Scholar 

  24. Patel RM, Knezevic A, Shenvi N, Hinkes M, Keene S, Roback JD, et al. Association of red blood cell transfusion, anemia, and necrotizing enterocolitis in very low-birth-weight infants. JAMA. 2016;315:889–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rocha G, Pereira S, Antunes-Sarmento J, Flôr-de-Lima F, Soares H, Guimarães H. Early anemia and neonatal morbidity in extremely low birth-weight preterm infants. J Matern Fetal Neonatal Med. 2019:1–7.

  26. Aher S, Malwatkar K, Kadam S. Neonatal anemia. Semin Fetal Neonatal Med. 2008;13:239–47.

    Article  PubMed  Google Scholar 

  27. Bierer R, Peceny MC, Hartenberger CH, Ohls RK. Erythropoietin concentrations and neurodevelopmental outcome in preterm infants. Pediatrics. 2006;118:e635–40.

    Article  PubMed  Google Scholar 

  28. EpicLatino. Epiclatino repport 2019. EpicLatino; 2019. https://www.epiclatino.co/report-2019.

  29. Pinsk V, Levy J, Moser A, Yerushalmi B, Kapelushnik J. Efficacy and safety of intravenous iron sucrose therapy in a group of children with iron deficiency anemia. Isr Med Assoc J. 2008;10:335–8.

    PubMed  Google Scholar 

  30. Schröder O, Mickisch O, Seidler U, de Weerth A, Dignass AU, Herfarth H, et al. Intravenous iron sucrose versus oral iron supplementation for the treatment of iron deficiency anemia in patients with inflammatory bowel disease-a randomized, controlled, open-label, multicenter study. Am J Gastroenterol. 2005;100:2503–9.

    Article  PubMed  Google Scholar 

  31. Gredilla E, Gimeno M, Canser E, Martínez B, Pérez Ferrer A, Gilsanz F. [Postpartum and early postoperative anemia after gynecological surgery: treatment with intravenous iron]. Rev Esp Anestesiol Reanim. 2006;53:208–13.

    CAS  PubMed  Google Scholar 

  32. Friel JK, Andrews WL, Hall MS, Rodway MS, Keith M, McCloy UC, et al. Intravenous iron administration to very-low-birth-weight newborns receiving total and partial parenteral nutrition. JPEN J Parenter Enter Nutr. 1995;19:114–8.

    Article  CAS  Google Scholar 

  33. Qiao L, Tang Q, Zhu W, Zhang H, Zhu Y, Wang H. Effects of early parenteral iron combined erythropoietin in preterm infants: a randomized controlled trial. Medicine. 2017;96:e5795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kaneva K, Chow E, Rosenfield CG, Kelly MJ. Intravenous iron sucrose for children with iron deficiency anemia. J Pediatr Hematol Oncol. 2017;39:e259–62.

    Article  CAS  PubMed  Google Scholar 

  35. Mantadakis E. Advances in pediatric intravenous iron therapy. Pediatr Blood Cancer. 2016;63:11–6.

    Article  PubMed  Google Scholar 

  36. Cançado RD, Muñoz M. Intravenous iron therapy: how far have we come? Rev Bras Hematol Hemoter. 2011;33:461–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Jeon GW, Sin JB. Risk factors of transfusion in anemia of very low birth weight infants. Yonsei Med J. 2013;54:366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  38. dos Santos AM, Guinsburg R, de Almeida MF, Procianoy RS, Marba ST, Ferri WA, et al. Factors associated with red blood cell transfusions in very-low-birth-weight preterm infants in Brazilian neonatal units. BMC Pediatr. 2015;15:113.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Omar S, Salhadar A, Lorenz JM. Prenatal steroids (pns) reduce erythrocyte transfusion in very low birth weight neonates ≤1500 GM. 1396. Pediatr Res. 1996;39:235.

    Article  Google Scholar 

  40. Madan A, Kumar R, Adams MM, Benitz WE, Geaghan SM, Widness JA. Reduction in red blood cell transfusions using a bedside analyzer in extremely low birth weight infants. J Perinatol. 2005;25:21–5.

    Article  PubMed  Google Scholar 

  41. Collard KJ. Is there a causal relationship between the receipt of blood transfusions and the development of chronic lung disease of prematurity? Med Hypotheses. 2006;66:355–64.

    Article  PubMed  Google Scholar 

  42. Auerbach M, Macdougall IC. Safety of intravenous iron formulations: facts and folklore. Blood Transfus. 2014;12:296–300.

    PubMed  PubMed Central  Google Scholar 

  43. Juul SE, Comstock BA, Wadhawan R, Mayock DE, Courtney SE, Robinson T, et al. A randomized trial of erythropoietin for neuroprotection in preterm infants. N Engl J Med. 2020;382:233–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wallin DJ, Zamora TG, Alexander M, Ennis KM, Tran PV, Georgieff MK. Neonatal mouse hippocampus: phlebotomy-induced anemia diminishes and treatment with erythropoietin partially rescues mammalian target of rapamycin signaling. Pediatr Res. 2017;82:501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Barks A, Fretham SJB, Georgieff MK, Tran PV. Early-life neuronal-specific iron deficiency alters the adult mouse hippocampal transcriptome. J Nutr. 2018;148:1521–8.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sola-Visner M. Anemia in neonates EpicLatino. Proceedings of the 1st EpicLatino Virtual Meeting. 2020. https://youtu.be/wT2xJY6D6D0. www.epiclatino.com

  47. Kling PJ. Iron nutrition, erythrocytes, and erythropoietin in the NICU: erythropoietic and neuroprotective effects. Neoreviews .2020;21:e80–e8.

    Article  PubMed  Google Scholar 

  48. Ertl R, Waldhoer T, Yang L. Moderate altitude impacts birth weight: 30 years retrospective sibling analyses using record linkage data. Pediatr Res. 2019;86:403–7.

    Article  PubMed  Google Scholar 

  49. West JB. A strategy for reducing neonatal mortality at high altitude using oxygen conditioning. J Perinatol. 2015;35:900–2.

    Article  CAS  PubMed  Google Scholar 

  50. Soria R, Julian CG, Vargas E, Moore LG, Giussani DA. Graduated effects of high-altitude hypoxia and highland ancestry on birth size. Pediatr Res. 2013;74:633–8.

    Article  PubMed  Google Scholar 

  51. Gonzales G, Salirrosas A. Arterial oxygen saturation in healthy newborns delivered at term in Cerro de Pasco (4340 m) and Lima (150 m). Reprod Biol Endocrinol. 2005;3:46.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank EpicLatino, its board of directors, and the participating units for letting us use their data and for systematically entering the information to make it a reliable one and thus enabling this type of work. We also want to thank the people who work in the Clínica del Country unit for their dedication and fine work that made these results possible and Felipe Fajardo for his valuable input on this English paper.

Author information

Authors and Affiliations

Authors

Contributions

ABH and PVH contributed equally to this research as authors. They were involved in planning and designing the study and participated in all stages of the project. ABH was involved in data extraction. ABH and PVH analyzed the data and described the results. Together, they wrote and approved the final paper.

Corresponding author

Correspondence to Angela B. Hoyos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoyos, A.B., Vasquez-Hoyos, P. Transfusion prevention using erythropoietin, parenteral sucrose iron, and fewer phlebotomies in infants born at ≤30 weeks gestation at a high altitude center: a 10-year experience. J Perinatol 41, 1403–1411 (2021). https://doi.org/10.1038/s41372-021-00945-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41372-021-00945-7

Search

Quick links