Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Antenatal and neonatal factors contributing to extra uterine growth failure (EUGR) among preterm infants in Boston Birth Cohort (BBC)

Abstract

Objective

Identify antenatal and neonatal factors associated with primary outcome of EUGR.

Methods

1063 preterm infants from a subset of the BBC were included in this prospective cohort study. Regression analysis was carried out to evaluate associations of EUGR with antenatal factors and neonatal factors.

Results

6.1% of the infants had in-utero growth restriction (IUGR) at birth and 21.7% of infants had EUGR. The adjusted odds ratio for EUGR status were significant for birth weight (OR 0.99, p = 0.00, CI 0.99–0.99), for GA at birth (OR 4.58, p = 0.00, CI 3.25–6.44), for PDA (OR 2.9, p = 0.02, CI 1.17–7.1), for NEC (OR 5.14, p = 0.012, CI 1.44–18.3) and for day of life of reaching full feeds (OR 1.04, p = 0.001, CI 1.01–1.06).

Conclusion

This study highlights important factors associated with EUGR. Additional studies are needed to gain further insight.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Fenton TR, Chan HT, Madhu A, Griffin IJ, Hoyos A, Ziegler EE, et al. Preterm infant growth velocity calculations: a systematic review. Pediatrics. 2017;139. https://doi.org/10.1542/peds.2016-2045.

  2. Fenton TR, Cormack B, Goldberg D, Nasser R, Alshaikh B, Eliasziw M, et al. ‘Extrauterine growth restriction’ and ‘postnatal growth failure’ are misnomers for preterm infants. J Perinatol. 2020. https://doi.org/10.1038/s41372-020-0658-5.

  3. Radmacher PG, Looney SW, Rafail ST, Adamkin DH. Prediction of extrauterine growth retardation (EUGR) in VVLBW infants. J Perinatol. 2003;23:392–5.

    Article  PubMed  Google Scholar 

  4. Dusick AM, Poindexter BB, Ehrenkranz RA, Lemons JA. Growth failure in the preterm infant: can we catch up? Semin Perinatol. 2003;27:302–10.

    Article  PubMed  Google Scholar 

  5. Ordóñez-Díaz MD, Pérez-Navero JL, Flores-Rojas K, Olza-Meneses J, Muñoz-Villanueva MC, Aguilera-García CM, et al. Prematurity with extrauterine growth restriction increases the risk of higher levels of glucose, low-grade of inflammation and hypertension in prepubertal children. Front Pediatr. 2020;8:180.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Martínez-Jiménez MD, Gómez-García FJ, Gil-Campos M, Pérez-Navero JL. Comorbidities in childhood associated with extrauterine growth restriction in preterm infants: a scoping review. Eur J Pediatr. 2020;179:1255–65.

    Article  PubMed  Google Scholar 

  7. Clayton PE, Cianfarani S, Czernichow P, Johannsson G, Rapaport R, Rogol A. Management of the child born small for gestational age through to adulthood: a consensus statement of the International Societies of Pediatric Endocrinology and the Growth Hormone Research Society. J Clin Endocrinol Metab. 2007;92:804–10.

    Article  CAS  PubMed  Google Scholar 

  8. Larroque B, Bertrais S, Czernichow P, Léger J. School difficulties in 20-year-olds who were born small for gestational age at term in a regional cohort study. Pediatrics. 2001;108:111–5.

    Article  CAS  PubMed  Google Scholar 

  9. Leger J, Levy-Marchal C, Bloch J, Pinet A, Chevenne D, Porquet D, et al. Reduced final height and indications for insulin resistance in 20 year olds born small for gestational age: regional cohort study. BMJ. 1997;315:341–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 2006;117:1253–61.

    Article  PubMed  Google Scholar 

  11. Regan FM, Cutfield WS, Jefferies C, Robinson E, Hofman PL. The impact of early nutrition in premature infants on later childhood insulin sensitivity and growth. Pediatrics. 2006;118:1943–9.

    Article  PubMed  Google Scholar 

  12. Singhal A. Early nutrition and long-term cardiovascular health. Nutr Rev. 2006;64:S44–9.

    Article  PubMed  Google Scholar 

  13. Singhal A, Cole TJ, Fewtrell M, Deanfield J, Lucas A. Is slower early growth beneficial for long-term cardiovascular health? Circulation. 2004;109:1108–13.

    Article  PubMed  Google Scholar 

  14. Wang X, Zuckerman B, Pearson C, Kaufman G, Chen C, Wang G, et al. Maternal cigarette smoking, metabolic gene polymorphism, and infant birth weight. JAMA. 2002;287:195–202.

    Article  CAS  PubMed  Google Scholar 

  15. Saenger P, Reiter E. Genetic factors associated with small for gestational age birth and the use of human growth hormone in treating the disorder. Int J Pediatr Endocrinol. 2012;2012:12.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Houk CP, Lee PA. Early diagnosis and treatment referral of children born small for gestational age without catch-up growth are critical for optimal growth outcomes. Int J Pediatr Endocrinol. 2012;2012:11.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ehrenkranz RA, Younes N, Lemons JA, Fanaroff AA, Donovan EF, Wright LL, et al. Longitudinal growth of hospitalized very low birth weight infants. Pediatrics. 1999;104:280–9.

    Article  CAS  PubMed  Google Scholar 

  18. Clark RH, Thomas P, Peabody J. Extrauterine growth restriction remains a serious problem in prematurely born neonates. Pediatrics. 2003;111:986–90.

    Article  PubMed  Google Scholar 

  19. Shan HM, Cai W, Cao Y, Fang BH, Feng Y. Extrauterine growth retardation in premature infants in Shanghai: a multicenter retrospective review. Eur J Pediatr. 2009;168:1055–9.

    Article  PubMed  Google Scholar 

  20. Ehrenkranz RA. Extrauterine growth restriction: is it preventable? J. Pediatr. 2014;90:1–3.

    Article  Google Scholar 

  21. Dinerstein A, Nieto RM, Solana CL, Perez GP, Otheguy LE, Larguia AM. Early and aggressive nutritional strategy (parenteral and enteral) decreases postnatal growth failure in very low birth weight infants. J Perinatol. 2006;26:436–42.

    Article  CAS  PubMed  Google Scholar 

  22. McCallie KR, Lee HC, Mayer O, Cohen RS, Hintz SR, Rhine WD. Improved outcomes with a standardized feeding protocol for very low birth weight infants. J Perinatol. 2011;31:S61–7.

    Article  CAS  PubMed  Google Scholar 

  23. Trevisanuto D, Peruzzetto C, Cavallin F, Vedovato S, Cosmi E, Visentin S, et al. Fetal placental inflammation is associated with poor neonatal growth of preterm infants: a case-control study. J Matern Fetal Neonatal Med. 2013;26:1484–90.

    Article  PubMed  Google Scholar 

  24. Mestan K, Yu Y, Matoba N, Cerda S, Demmin B, Pearson C, et al. Placental inflammatory response is associated with poor neonatal growth: preterm birth cohort study. Pediatrics. 2010;125:e891–8.

    Article  PubMed  Google Scholar 

  25. Tachibana M, Nakayama M, Ida S, Kitajima H, Mitsuda N, Ozono K, et al. Pathological examination of the placenta in small for gestational age (SGA) children with or without postnatal catch-up growth. J Matern Fetal Neonatal Med. 2016;29:982–6.

    Article  PubMed  Google Scholar 

  26. Barker DJ. Fetal origins of coronary heart disease. BMJ. 1995;311:171–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang L, Wang X, Laird N, Zuckerman B, Stubblefield P, Xu X. Polymorphism in maternal LRP8 gene is associated with fetal growth. Am J Hum Genet. 2006;78:770–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fenton TR, Kim JH. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013;13:59.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kumar P, Venners SA, Fu L, Pearson C, Ortiz K, Wang X. Association of antenatal steroid use with cord blood immune biomarkers in preterm births. Early Hum Dev. 2011;87:559–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. World Health Organization. ICD-10: International statisti-cal classification of diseases and related health problems, 10th revision. Volume 2. 2nd ed. Geneva: WHO; 2004. http://www.who.int/classifications/icd/ICD-10_2nd_ed_volume2.pdf.

  31. Bustamante Helfrich B, Chilukuri N, He H, Cerda SR, Hong X, Wang G, et al. Maternal vascular malperfusion of the placental bed associated with hypertensive disorders in the Boston Birth Cohort. Placenta. 2017;52:106–13.

    Article  PubMed  Google Scholar 

  32. Langston C, Kaplan C, Macpherson T, Manci E, Peevy K, Clark B, et al. Practice guideline for examination of the placenta: developed by the Placental Pathology Practice Guideline Development Task Force of the College of American Pathologists. Arch Pathol Lab Med. 1997;121:449–76.

    CAS  PubMed  Google Scholar 

  33. Redline RW. The clinical implications of placental diagnoses. Semin Perinatol. 2015;39:2–8.

    Article  PubMed  Google Scholar 

  34. Redline RW. Classification of placental lesions. Am J Obstet Gynecol. 2015;213:S21–8.

    Article  PubMed  Google Scholar 

  35. StataCorp. Stata Statistical Software: Release 15. College Station, TX: StataCorp LLC; 2017.

  36. Lemons JA, Bauer CR, Oh W, Korones SB, Papile LA, Stoll BJ, et al. Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics. 2001;107:E1.

    Article  CAS  PubMed  Google Scholar 

  37. Redline RW. Placental pathology: a systematic approach with clinical correlations. Placenta. 2008;29:S86–91.

    Article  PubMed  Google Scholar 

  38. Ernst LM. Maternal vascular malperfusion of the placental bed. APMIS. 2018;126:551–60.

    Article  PubMed  Google Scholar 

  39. Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol. 2018;218:S745–S761.

    Article  CAS  PubMed  Google Scholar 

  40. Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease. Physiol Rev. 2016;96:1509–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Spencer N, Logan S. Social influences on birth weight. J Epidemiol Community Health. 2002;56:326–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Goldberg DL, Becker PJ, Brigham K, Carlson S, Fleck L, Gollins L, et al. Identifying malnutrition in preterm and neonatal populations: recommended indicators. J Acad Nutr Diet. 2018;118:1571–82.

    Article  PubMed  Google Scholar 

  43. Horbar JD, Ehrenkranz RA, Badger GJ, Edwards EM, Morrow KA, Soll RF, et al. Weight growth velocity and postnatal growth failure in infants 501 to 1500 grams: 2000–2013. Pediatrics. 2015;136:e84–92.

    Article  PubMed  Google Scholar 

Download references

Funding

The Boston Birth Cohort (the parent study, PI, XW) was supported in part by the March of Dimes PERI grants (20-FY02-56, #21-FY07-605), the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) under grant number R40MC27443, Autism Field-initiated Innovative Research Studies Program; and grant number UJ2MC31074, Autism Single Investigator Innovation Program; and the National Institutes of Health (NIH) grants (R21ES011666, 2R01HD041702, R21HD066471, U01AI090727, R21AI079872, R01HD086013, R01HD098232, R21AI154233, and R01ES031272). This information or content and conclusions are those of the author and should not be construed as the official position or policy of, nor should any endorsements be inferred by HRSA, HHS or the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartikeya Makker.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makker, K., Ji, Y., Hong, X. et al. Antenatal and neonatal factors contributing to extra uterine growth failure (EUGR) among preterm infants in Boston Birth Cohort (BBC). J Perinatol 41, 1025–1032 (2021). https://doi.org/10.1038/s41372-021-00948-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41372-021-00948-4

This article is cited by

Search

Quick links