Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Immature control of breathing and apnea of prematurity: the known and unknown

Abstract

This narrative review provides a broad perspective on immature control of breathing, which is universal in infants born premature. The degree of immaturity and severity of clinical symptoms are inversely correlated with gestational age. This immaturity presents as prolonged apneas with associated bradycardia or desaturation, or brief respiratory pauses, periodic breathing, and intermittent hypoxia. These manifestations are encompassed within the clinical diagnosis of apnea of prematurity, but there is no consensus on minimum criteria required for diagnosis. Common treatment strategies include caffeine and noninvasive respiratory support, but other therapies have also been advocated with varying effectiveness. There is considerable variability in when and how to initiate and discontinue treatment. There are significant knowledge gaps regarding effective strategies to quantify the severity of clinical manifestations of immature breathing, which prevent us from better understanding the long-term potential adverse outcomes, including neurodevelopment and sudden unexpected infant death.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The pathophysiology of apnea of prematurity.

Similar content being viewed by others

References

  1. Yiallourou SR, Witcombe NB, Sands SA, Walker AM, Horne RS. The development of autonomic cardiovascular control is altered by preterm birth. Early Hum Dev. 2013;89:145–52.

    Article  PubMed  Google Scholar 

  2. Martin RJ, Wilson CG. Apnea of prematurity. Compr Physiol. 2012;2:2923–31.

    Article  PubMed  Google Scholar 

  3. Poets CF. Apnea of prematurity: what can observational studies tell us about pathophysiology? Sleep Med. 2010;11:701–7.

    Article  PubMed  Google Scholar 

  4. Lorch SA, Srinivasan L, Escobar GJ. Epidemiology of apnea and bradycardia resolution in premature infants. Pediatrics. 2011;128:e366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dobson NR, Thompson MW, Hunt CE. Control of breathing: maturation and associated clinical disorders. In: JP Boardman AG, J Ramasethu, editors. 8th ed. of Avery and MacDonald’s Neonatology Pathophysiology and Management of the Newborn: Wolters Kluwer Health; 2021.

  6. Henderson-Smart DJ. The effect of gestational age on the incidence and duration of recurrent apnoea in newborn babies. Aust Paediatr J. 1981;17:273–6.

    CAS  PubMed  Google Scholar 

  7. Barrington K, Finer N. The natural history of the appearance of apnea of prematurity. Pediatr Res. 1991;29:372–5.

    Article  CAS  PubMed  Google Scholar 

  8. Di Fiore JM, Poets CF, Gauda E, Martin RJ, MacFarlane P. Cardiorespiratory events in preterm infants: etiology and monitoring technologies. J Perinatol. 2016;36:165–71.

    Article  PubMed  Google Scholar 

  9. Di Fiore JM, Martin RJ, Gauda EB. Apnea of prematurity—perfect storm. Respir Physiol Neurobiol. 2013;189:213–22.

    Article  PubMed  Google Scholar 

  10. Ramanathan R, Corwin MJ, Hunt CE, Lister G, Tinsley LR, Baird T, et al. Cardiorespiratory events recorded on home monitors: Comparison of healthy infants with those at increased risk for SIDS. JAMA. 2001;285:2199–207.

    Article  CAS  PubMed  Google Scholar 

  11. Hunt CE, Corwin MJ, Lister G, Weese-Mayer DE, Ward SL, Tinsley LR, et al. Precursors of cardiorespiratory events in infants detected by home memory monitor. Pediatr Pulmonol. 2008;43:87–98.

    Article  PubMed  Google Scholar 

  12. Fairchild K, Mohr M, Paget-Brown A, Tabacaru C, Lake D, Delos J, et al. Clinical associations of immature breathing in preterm infants: part 1-central apnea. Pediatr Res. 2016;80:21–7.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marshall AP, Lim K, Ali SK, Gale TJ, Dargaville PA. Physiological instability after respiratory pauses in preterm infants. Pediatr Pulmonol. 2019;54:1712–21.

    Article  PubMed  Google Scholar 

  14. Al-Matary A, Kutbi I, Qurashi M, Khalil M, Alvaro R, Kwiatkowski K, et al. Increased peripheral chemoreceptor activity may be critical in destabilizing breathing in neonates. Semin Perinatol. 2004;28:264–72.

    Article  PubMed  Google Scholar 

  15. Patel M, Mohr M, Lake D, Delos J, Moorman JR, Sinkin RA, et al. Clinical associations with immature breathing in preterm infants: part 2-periodic breathing. Pediatr Res. 2016;80:28–34.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Seppä-Moilanen M, Andersson S, Rantakari K, Mikkola K, Kirjavainen T. Caffeine and supplemental oxygen effectively suppress periodic breathing with only minor effects during long episodes of apnoea in preterm infants. Acta Paediatr. 2019;108:443–51.

    Article  PubMed  CAS  Google Scholar 

  17. MacFarlane PM, Ribeiro AP, Martin RJ. Carotid chemoreceptor development and neonatal apnea. Respir Physiol Neurobiol. 2013;185:170–6.

    Article  CAS  PubMed  Google Scholar 

  18. Hunt CE, Corwin MJ, Weese-Mayer DE, Ward SL, Ramanathan R, Lister G, et al. Longitudinal assessment of hemoglobin oxygen saturation in preterm and term infants in the first six months of life. J Pediatr. 2011;159:377–83.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Di Fiore JM, Bloom JN, Orge F, Schutt A, Schluchter M, Cheruvu VK, et al. A higher incidence of intermittent hypoxemic episodes is associated with severe retinopathy of prematurity. J Pediatr. 2010;157:69–73.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cailleau L, Weber R, Cabon S, Flamant C, Roué J-M, Favrais G, et al. Quiet sleep organization of very preterm infants is correlated with postnatal maturation. Front Pediatr. 2020;8:559658.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Bloch-Salisbury E, Hall MH, Sharma P, Boyd T, Bednarek F, Paydarfar D. Heritability of apnea of prematurity: a retrospective twin study. Pediatrics. 2010;126:e779–87.

    Article  PubMed  Google Scholar 

  22. Kumral A, Tuzun F, Yesilirmak DC, Duman N, Ozkan H. Genetic basis of apnoea of prematurity and caffeine treatment response: role of adenosine receptor polymorphisms: genetic basis of apnoea of prematurity. Acta Paediatr. 2012;101:e299–303.

    Article  CAS  PubMed  Google Scholar 

  23. He X, Qiu JC, Lu KY, Guo HL, Li L, Jia WW, et al. Therapy for apnoea of prematurity: a retrospective study on effects of standard dose and genetic variability on clinical response to caffeine citrate in Chinese preterm infants. Adv Ther. 2021;38:607–26.

  24. Dobson NR, Hunt CE. Caffeine: an evidence-based success story in VLBW pharmacotherapy. Pediatr Res. 2018;84:333–40.

    Article  CAS  PubMed  Google Scholar 

  25. Henderson-Smart DJ, De Paoli AG. Methylxanthine treatment for apnoea in preterm infants. Cochrane Database Syst Rev. 2010;12:CD000140.

  26. Henderson-Smart DJ, Steer PA. Caffeine versus theophylline for apnea in preterm infants. Cochrane Database Syst Rev. 2010;1:CD000273.

  27. Mayer CA, Haxhiu MA, Martin RJ, Wilson CG. Adenosine A2A receptors mediate GABAergic inhibition of respiration in immature rats. J Appl Physiol. 2006;100:91–7.

    Article  CAS  PubMed  Google Scholar 

  28. Wilson CG, Martin RJ, Jaber M, Abu-Shaweesh J, Jafri A, Haxhiu MA, et al. Adenosine A2A receptors interact with GABAergic pathways to modulate respiration in neonatal piglets. Respir Physiol Neurobiol. 2004;141:201–11.

    Article  CAS  PubMed  Google Scholar 

  29. Aranda JV, Gorman W, Bergsteinsson H, Gunn T. Efficacy of caffeine in treatment of apnea in the low-birth-weight infant. J Pediatr. 1977;90:467–72.

    Article  CAS  PubMed  Google Scholar 

  30. Aranda JV, Turmen T. Methylxanthines in apnea of prematurity. Clin Perinatol. 1979;6:87–108.

    Article  CAS  PubMed  Google Scholar 

  31. Puia-Dumitrescu M, Smith PB, Zhao J, Soriano A, Payne EH, Harper B, et al. Dosing and safety of off-label use of caffeine citrate in premature infants. J Pediatr. 2019;211:27–32.e1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brattström P, Russo C, Ley D, Bruschettini M. High-versus low-dose caffeine in preterm infants: a systematic review and meta-analysis. Acta Paediatr. 2019;108:401–10.

    Article  PubMed  CAS  Google Scholar 

  33. Ravichandran S, Chouthai NS, Patel B, Sharma A, Gupte A, Ma MM, et al. Higher daily doses of caffeine lowered the incidence of moderate to severe neurodevelopmental disabilities in very low birth weight infants. Acta Paediatr. 2019;108:430–5.

    Article  CAS  PubMed  Google Scholar 

  34. McPherson C, Neil JJ, Tjoeng TH, Pineda R, Inder TE. A pilot randomized trial of high-dose caffeine therapy in preterm infants. Pediatr Res. 2015;78:198–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Caffeine therapy for apnea of prematurity. N Engl J Med. 2006;354:2112–21.

    Article  CAS  PubMed  Google Scholar 

  36. Schmidt B, Roberts RS, Davis P, Doyle LW, Barrington KJ, Ohlsson A, et al. Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med. 2007;357:1893–902.

    Article  CAS  PubMed  Google Scholar 

  37. Schmidt B, Anderson PJ, Doyle LW, Dewey D, Grunau RE, Asztalos EV, et al. Survival without disability to age 5 years after neonatal caffeine therapy for apnea of prematurity. JAMA. 2012;307:275–82.

    Article  CAS  PubMed  Google Scholar 

  38. Gounaris AK, Grivea IN, Baltogianni M, Gounari E, Antonogeorgos G, Kokori F, et al. Caffeine and gastric emptying time in very preterm neonates. J Clin Med. 2020;9:1676.

  39. Ilhan O, Bor M. Effects of caffeine on splanchnic oxygenation in preterm infants. Am J Perinatol. 2020. Epub ahead of print.

  40. Welsh C, Pan J, Belik J. Caffeine impairs gastrointestinal function in newborn rats. Pediatr Res. 2015;78:24–8.

    Article  CAS  PubMed  Google Scholar 

  41. Gillot I, Gouyon JB, Guignard JP. Renal effects of caffeine in preterm infants. Biol Neonate. 1990;58:133–6.

    Article  CAS  PubMed  Google Scholar 

  42. Harer MW, Askenazi DJ, Boohaker LJ, Carmody JB, Griffin RL, Guillet R, et al. Association between early caffeine citrate administration and risk of acute kidney injury in preterm neonates: results from the AWAKEN Study. JAMA Pediatr. 2018;172:e180322.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ergenekon E, Dalgiç N, Aksoy E, Koç E, Atalay Y. Caffeine intoxication in a premature neonate. Paediatr Anaesth. 2001;11:737–9.

    Article  CAS  PubMed  Google Scholar 

  44. Nakaoka S, Kawasaki Y, Inomata S, Makimoto M, Yoshida T. Caffeine toxicity in a preterm neonate. Pediatr Neonatol. 2017;58:380–1.

    Article  PubMed  Google Scholar 

  45. Charles BG, Townsend SR, Steer PA, Flenady VJ, Gray PH, Shearman A. Caffeine citrate treatment for extremely premature infants with apnea: population pharmacokinetics, absolute bioavailability, and implications for therapeutic drug monitoring. Ther Drug Monit. 2008;30:709–16.

    Article  CAS  PubMed  Google Scholar 

  46. Henderson-Smart DJ, Davis PG. Prophylactic methylxanthines for endotracheal extubation in preterm infants. Cochrane Database Syst Rev. 2010;12:CD000139.

  47. Doyle LW, Ranganathan S, Cheong JLY. Neonatal caffeine treatment and respiratory function at 11 years in children under 1,251 g at birth. Am J Respir Crit Care Med. 2017;196:1318–24.

    Article  CAS  PubMed  Google Scholar 

  48. Davis PG, Schmidt B, Roberts RS, Doyle LW, Asztalos E, Haslam R, et al. Caffeine for apnea of prematurity trial: benefits may vary in subgroups. J Pediatr. 2010;156:382–7.

    Article  CAS  PubMed  Google Scholar 

  49. Nylander Vujovic S, Nava C, Johansson M, Bruschettini M. Confounding biases in studies on early- versus late-caffeine in preterm infants: a systematic review. Pediatr Res. 2020;88:357–64.

    Article  PubMed  Google Scholar 

  50. Amaro CM, Bello JA, Jain D, Ramnath A, D’Ugard C, Vanbuskirk S, et al. Early caffeine and weaning from mechanical ventilation in preterm infants: a randomized, placebo-controlled trial. J Pediatr. 2018;196:52–7.

    Article  CAS  PubMed  Google Scholar 

  51. Abu Jawdeh EG, O’Riordan M, Limrungsikul A, Bandyopadhyay A, Argus BM, Nakad PE, et al. Methylxanthine use for apnea of prematurity among an international cohort of neonatologists. J Neonatal Perinatal Med. 2013;6:251–6.

    Article  CAS  PubMed  Google Scholar 

  52. Eichenwald EC, Committee on Fetus and Newborn AAP. Apnea of prematurity. Pediatrics. 2016;137:e20153757.

  53. Chung J, Tran Lopez K, Amendolia B, Bhat V, Nakhla T, Slater-Myer L, et al. Stopping caffeine in premature neonates: how long does it take for the level of caffeine to fall below the therapeutic range? J Matern Fetal Neonatal Med. 2020;1–5: Epub ahead of print.

  54. Doyle J, Davidson D, Katz S, Varela M, Demeglio D, DeCristofaro J. Apnea of prematurity and caffeine pharmacokinetics: potential impact on hospital discharge. J Perinatol. 2016;36:141–4.

    Article  CAS  PubMed  Google Scholar 

  55. Miller MJ, Carlo WA, Martin RJ. Continuous positive airway pressure selectively reduces obstructive apnea in preterm infants. J Pediatr. 1985;106:91–4.

    Article  CAS  PubMed  Google Scholar 

  56. Sreenan C, Lemke RP, Hudson-Mason A, Osiovich H. High-flow nasal cannulae in the management of apnea of prematurity: a comparison with conventional nasal continuous positive airway pressure. Pediatrics. 2001;107:1081–3.

    Article  CAS  PubMed  Google Scholar 

  57. Al-Alaiyan S, Dawoud M, Al-Hazzani F. Positive distending pressure produced by heated, humidified high flow nasal cannula as compared to nasal continuous positive airway pressure in premature infants. J Neonatal Perinatal Med. 2014;7:119–24.

    Article  CAS  PubMed  Google Scholar 

  58. Lemyre B, Davis PG, de Paoli AG. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for apnea of prematurity. Cochrane Database Syst Rev. 2002;1:CD002272.

  59. Pantalitschka T, Sievers J, Urschitz MS, Herberts T, Reher C, Poets CF. Randomised crossover trial of four nasal respiratory support systems for apnoea of prematurity in very low birthweight infants. Arch Dis Child Fetal Neonatal Ed. 2009;94:F245–8.

    Article  CAS  PubMed  Google Scholar 

  60. Gizzi C, Montecchia F, Panetta V, Castellano C, Mariani C, Campelli M, et al. Is synchronised NIPPV more effective than NIPPV and NCPAP in treating apnoea of prematurity (AOP)? A randomised cross-over trial. Arch Dis Child Fetal Neonatal Ed. 2015;100:F17–23.

    Article  PubMed  Google Scholar 

  61. Tabacaru CR, Moores RR, Khoury J, Rozycki HJ. NAVA-synchronized compared to nonsynchronized noninvasive ventilation for apnea, bradycardia, and desaturation events in VLBW infants. Pediatr Pulmonol. 2019;54:1742–6.

    Article  PubMed  Google Scholar 

  62. Firestone K, Horany BA, de Leon-Belden L, Stein H. Nasal continuous positive airway pressure versus noninvasive NAVA in preterm neonates with apnea of prematurity: a pilot study with a novel approach. J Perinatol. 2020;40:1211–5.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Quitadamo P, Giorgio V, Zenzeri L, Baldassarre M, Cresi F, Borrelli O, et al. Apnea in preterm neonates: what’s the role of gastroesophageal reflux? A systematic review. Dig Liver Dis. 2020;52:723–9.

    Article  PubMed  Google Scholar 

  64. Zagol K, Lake DE, Vergales B, Moorman ME, Paget-Brown A, Lee H, et al. Anemia, apnea of prematurity, and blood transfusions. J Pediatr. 2012;161:417–21.e1.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Abu Jawdeh EG, Martin RJ, Dick TE, Walsh MC, Di, Fiore JM. The effect of red blood cell transfusion on intermittent hypoxemia in ELBW infants. J Perinatol. 2014;34:921–5.

    Article  CAS  PubMed  Google Scholar 

  66. Kovatis KZ, Di Fiore JM, Martin RJ, Abbasi S, Chaundhary AS, Hoover S, et al. Effect of blood transfusions on intermittent hypoxic episodes in a prospective study of very low birth weight infants. J Pediatr. 2020;222:65–70.

    Article  CAS  PubMed  Google Scholar 

  67. Kirpalani H, Whyte RK. What is new about transfusions for preterm infants? An update. Neonatology. 2019;115:406–10.

    Article  PubMed  Google Scholar 

  68. Eichenwald EC, Aina A, Stark AR. Apnea frequently persists beyond term gestation in infants delivered at 24 to 28 weeks. Pediatrics. 1997;100:354–9.

    Article  CAS  PubMed  Google Scholar 

  69. Rhein LM, Dobson NR, Darnall RA, Corwin MJ, Heeren TC, Poets CF, et al. Effects of caffeine on intermittent hypoxia in infants born prematurely: a randomized clinical trial. JAMA Pediatr. 2014;168:250–7.

    Article  PubMed  Google Scholar 

  70. Dobson NR, Rhein LM, Darnall RA, Corwin MJ, Heeren TC, Eichenwald E, et al. Caffeine decreases intermittent hypoxia in preterm infants nearing term-equivalent age. J Perinatol. 2017;37:1135–40.

    Article  CAS  PubMed  Google Scholar 

  71. Brockmann PE, Wiechers C, Pantalitschka T, Diebold J, Vagedes J, Poets CF. Under-recognition of alarms in a neonatal intensive care unit. Arch Dis Child Fetal Neonatal Ed. 2013;98:F524–7.

    Article  PubMed  Google Scholar 

  72. Ho T, Dukhovny D, Zupancic JA, Goldmann DA, Horbar JD, Pursley DM. Choosing wisely in newborn medicine: five opportunities to increase value. Pediatrics. 2015;136:e482–9.

    Article  PubMed  Google Scholar 

  73. Perfect Sychowski S, Dodd E, Thomas P, Peabody J, Clark R. Home apnea monitor use in preterm infants discharged from newborn intensive care units. J Pediatr. 2001;139:245–8.

    Article  CAS  PubMed  Google Scholar 

  74. Strehle EM, Gray WK, Gopisetti S, Richardson J, McGuire J, Malone S. Can home monitoring reduce mortality in infants at increased risk of sudden infant death syndrome? A systematic review. Acta Paediatr. 2012;101:8–13.

    Article  PubMed  Google Scholar 

  75. Raffay TM, Dylag AM, Sattar A, Abu Jawdeh EG, Cao S, Pax BM, et al. Neonatal intermittent hypoxemia events are associated with diagnosis of bronchopulmonary dysplasia at 36 weeks postmenstrual age. Pediatr Res. 2019;85:318–23.

    Article  PubMed  Google Scholar 

  76. Fairchild KD, Nagraj VP, Sullivan BA, Moorman JR, Lake DE. Oxygen desaturations in the early neonatal period predict development of bronchopulmonary dysplasia. Pediatr Res. 2019;85:987–93.

    Article  PubMed  Google Scholar 

  77. Raffay TM, Martin RJ. Intermittent hypoxia and bronchial hyperreactivity. Semin Fetal Neonatal Med. 2020;25:101073.

    Article  PubMed  Google Scholar 

  78. Darnall RA, Chen X, Nemani KV, Sirieix CM, Gimi B, Knoblach S, et al. Early postnatal exposure to intermittent hypoxia in rodents is proinflammatory, impairs white matter integrity, and alters brain metabolism. Pediatr Res. 2017;82:164–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Poets CF, Roberts RS, Schmidt B, Whyte RK, Asztalos EV, Bader D, et al. Association between intermittent hypoxemia or bradycardia and late death or disability in extremely preterm infants. JAMA. 2015;314:595–603.

    Article  CAS  PubMed  Google Scholar 

  80. Gozal D. Sleep-disordered breathing and school performance in children. Pediatrics. 1998;102:616–20.

    Article  CAS  PubMed  Google Scholar 

  81. Hunt CE. Neurocognitive outcomes in sleep-disordered breathing. J Pediatr. 2004;145:430–2.

    Article  PubMed  Google Scholar 

  82. Janvier A, Khairy M, Kokkotis A, Cormier C, Messmer D, Barrington KJ. Apnea is associated with neurodevelopmental impairment in very low birth weight infants. J Perinatol. 2004;24:763–8.

    Article  PubMed  Google Scholar 

  83. Greene MM, Patra K, Khan S, Karst JS, Nelson MN, Silvestri JM. Cardiorespiratory events in extremely low birth weight infants: neurodevelopmental outcome at 1 and 2 years. J Perinatol. 2014;34:562–5.

    Article  CAS  PubMed  Google Scholar 

  84. Pillekamp F, Hermann C, Keller T, von Gontard A, Kribs A, Roth B. Factors influencing apnea and bradycardia of prematurity - implications for neurodevelopment. Neonatology. 2007;91:155–61.

    Article  CAS  PubMed  Google Scholar 

  85. Tieder JS, Bonkowsky JL, Etzel RA, Franklin WH, Gremse DA, Herman B, et al. Brief resolved unexplained events (formerly apparent life-threatening events) and evaluation of lower-risk infants. Pediatrics. 2016;137:e20160590.

  86. DeLaroche AM, Haddad R, Farooqi A, Sapién RE, Tieder JS. Outcome prediction of higher-risk brief resolved unexplained events. Hosp Pediatr. 2020;10:303–10.

    Article  PubMed  Google Scholar 

  87. Moon RY, Task Force on Sudden Infant Death Syndrome. SIDS and other sleep-related infant deaths: evidence base for 2016 updated recommendations for a safe infant sleeping environment. Pediatrics. 2016;138:e20162940.

  88. Malloy MH. Prematurity and sudden infant death syndrome: United States 2005–2007. J Perinatol. 2013;33:470–5.

    Article  CAS  PubMed  Google Scholar 

  89. Di Fiore JM, MacFarlane PM, Martin RJ. Intermittent hypoxemia in preterm infants. Clin Perinatol. 2019;46:553–65.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chen T, Hughes ME, Wang H, Wang G, Hong X, Liu L, et al. Prenatal, perinatal, and early childhood factors associated with childhood obstructive sleep apnea. J Pediatr. 2019;212:20–7.e10.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Thomas B, Thillainathan K, Delahunty M, Weichard A, Davey MJ, Nixon GM, et al. Cardiovascular autonomic control is altered in children born preterm with sleep disordered breathing. J Pediatr. 2019;206:83–90.

    Article  PubMed  Google Scholar 

  92. Tapia IE, Marcus CL, McDonough JM, Kim JY, Cornaglia MA, Xiao R, et al. Airway resistance in children with obstructive sleep apnea syndrome. Sleep. 2016;39:793–9.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Huang YS, Hsu JF, Paiva T, Chin WC, Chen IC, Guilleminault C. Sleep-disordered breathing, craniofacial development, and neurodevelopment in premature infants: a 2-year follow-up study. Sleep Med. 2019;60:20–5.

    Article  PubMed  Google Scholar 

  94. Hibbs AM, Johnson NL, Rosen CL, Kirchner HL, Martin R, Storfer-Isser A, et al. Prenatal and neonatal risk factors for sleep disordered breathing in school-aged children born preterm. J Pediatr. 2008;153:176–82.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Amin SB, Burnell E. Monitoring apnea of prematurity: validity of nursing documentation and bedside cardiorespiratory monitor. Am J Perinatol. 2013;30:643–8.

    PubMed  Google Scholar 

  96. Mathew OP. Apnea of prematurity: pathogenesis and management strategies. J Perinatol. 2011;31:302–10.

    Article  CAS  PubMed  Google Scholar 

  97. Di Fiore JM, Poets CF, Gauda E, Martin RJ, MacFarlane P. Cardiorespiratory events in preterm infants: interventions and consequences. J Perinatol. 2016;36:251–8.

    Article  PubMed  Google Scholar 

  98. Kraaijenga JV, Hutten GJ, de Waal CG, de Jongh FH, Onland W, van Kaam AH. Classifying apnea of prematurity by transcutaneous electromyography of the diaphragm. Neonatology. 2018;113:140–5.

    Article  PubMed  Google Scholar 

  99. Williamson JR, Bliss DW, Paydarfar D. Forecasting respiratory collapse: theory and practice for averting life-threatening infant apneas. Respir Physiol Neurobiol. 2013;189:223–31.

    Article  PubMed  Google Scholar 

  100. Coughlin K, Posencheg M, Orfe L, Zachritz W, Meadow J, Yang K, et al. Reducing variation in the management of apnea of prematurity in the intensive care nursery. Pediatrics. 2020;145:e20190861.

  101. Alvaro RE, Khalil M, Qurashi M, Al-Saif S, Al-Matary A, Chiu A, et al. CO(2) inhalation as a treatment for apnea of prematurity: a randomized double-blind controlled trial. J Pediatr. 2012;160:252–7.e1.

    Article  CAS  PubMed  Google Scholar 

  102. Joseph LJ, Goldberg S, Picard E. CO2 treatment for apnea. J Pediatr. 2009;154:627–8. author reply 8-9

    Article  PubMed  Google Scholar 

  103. Ballout RA, Foster JP, Kahale LA, Badr L. Body positioning for spontaneously breathing preterm infants with apnoea. Cochrane Database Syst Rev. 2017;1:CD004951.

    PubMed  Google Scholar 

  104. Gaugler C, Marlier L, Messer J. Sensory stimulations for the treatment of idiopathic apneas of prematurity. Arch Pediatr. 2007;14:485–9.

    Article  CAS  PubMed  Google Scholar 

  105. Cramer SJE, Dekker J, Dankelman J, Pauws SC, Hooper SB, Te, Pas AB. Effect of tactile stimulation on termination and prevention of apnea of prematurity: a systematic review. Front Pediatr. 2018;6:45.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Henderson-Smart DJ, Osborn DA. Kinesthetic stimulation for preventing apnea in preterm infants. Cochrane Database Syst Rev. 2002;2:CD000373.

  107. Kesavan K, Frank P, Cordero DM, Benharash P, Harper RM. Neuromodulation of limb proprioceptive afferents decreases apnea of prematurity and accompanying intermittent hypoxia and bradycardia. PLoS ONE. 2016;11:e0157349.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Marlier L, Gaugler C, Messer J. Olfactory stimulation prevents apnea in premature newborns. Pediatrics. 2005;115:83–8.

    Article  PubMed  Google Scholar 

  109. Montealegre-Pomar A, Bohorquez A, Charpak N. Systematic review and meta-analysis suggest that Kangaroo position protects against apnoea of prematurity. Acta Paediatr. 2020;109:1310–6.

    Article  PubMed  Google Scholar 

  110. Vliegenthart RJ, Ten Hove CH, Onland W, van Kaam AH. Doxapram treatment for apnea of prematurity: a systematic review. Neonatology. 2017;111:162–71.

    Article  PubMed  Google Scholar 

  111. Terrin G, Passariello A, De Curtis M, Manguso F, Salvia G, Lega L, et al. Ranitidine is associated with infections, necrotizing enterocolitis, and fatal outcome in newborns. Pediatrics. 2012;129:e40–5.

    Article  PubMed  Google Scholar 

  112. Bairam A, Boukari R, Joseph V. Targeting progesterone receptors in newborn males and females: from the animal model to a new perspective for the treatment of apnea of prematurity? Respir Physiol Neurobiol. 2019;263:55–61.

    Article  CAS  PubMed  Google Scholar 

  113. Ren J, Ding X, Greer JJ. Ampakines enhance weak endogenous respiratory drive and alleviate apnea in perinatal rats. Am J Respir Crit Care Med. 2015;191:704–10.

    Article  CAS  PubMed  Google Scholar 

  114. Saroha V, Patel RM. Caffeine for preterm infants: fixed standard dose, adjustments for age or high dose? Semin Fetal Neonatal Med. 2020;25:101178.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Davis PG. When to start and stop caffeine and why respiratory status matters. Semin Fetal Neonatal Med. 2020;25:101175.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors were involved in the design of included content, review of the recent literature, development of tables and figures, and the writing of the paper.

Corresponding author

Correspondence to Nicole R. Dobson.

Ethics declarations

Conflict of interest

The authors declare no competing interests. The views expressed in this review do not reflect the official policy or position of the United States Air Force, Army, Navy, Department of Defense, or the U.S. Government.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erickson, G., Dobson, N.R. & Hunt, C.E. Immature control of breathing and apnea of prematurity: the known and unknown. J Perinatol 41, 2111–2123 (2021). https://doi.org/10.1038/s41372-021-01010-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41372-021-01010-z

This article is cited by

Search

Quick links