Table 4 The performance of the decision tree, random forests, artificial neural networks, and support vector machine models.

From: Performance and efficiency of machine learning algorithms for analyzing rectangular biomedical data

Statistical

Measure

Alive (%)

Non-breast cancer (%)

Breast cancer (%)

CVS (%)

Other cause (%)

Decision tree

 Accuracy

69.21

 Precision

73.56

NA

55.65

22.58

21.09

 Recall

94.17

0.00

43.36

2.25

8.45

 Specificity (TNR)

26.50

100.00

91.65

99.23

96.38

 F1

82.60

NA

48.74

4.09

12.06

Random forest

 Accuracy

70.23

 Precision

71.56

0.00

62.55

33.33

33.33

 Recall

96.69

0.00

43.22

2.25

1.09

 Specificity (TNR)

22.65

99.94

93.71

99.56

99.75

 F1

82.25

NA

51.12

4.22

2.11

Artificial neural networks

 Accuracy

70.16

 Precision

72.88

NA

59.52

36.00

28.57

 Recall

95.47

0.00

44.04

5.79

5.45

 Specificity (TNR)

25.84

100.00

92.78

98.99

98.43

 F1

82.66

NA

50.62

9.97

9.15

Support vector machine

 Accuracy

69.06

 Precision

70.04

NA

60.75

NA

NA

 Recall

96.22

0.00

39.43

0.00

0.00

 Specificity (TNR)

19.43

100.00

93.75

100.00

100.00

 F1

81.07

NA

47.82

NA

NA

Multinomial logistic regression

   

 Accuracy

  

68.12

  

 Precision

69.71

61.10

13.73

50.00

22.73

 Recall

96.38

42.66

1.13

0.54

1.24

 Specificity (TNR)

29.33

73.98

85.71

90.41

99.59

 F1

80.90

50.25

2.10

1.07

2.35

  1. CVS cardiovascular disease, NA not applicable, TNR true negative rate.