Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CHRONIC MYELOPROLIFERATIVE NEOPLASMS

Proteomic screening identifies PF4/Cxcl4 as a critical driver of myelofibrosis

A Correction to this article was published on 01 April 2025

This article has been updated

Abstract

Despite increased understanding of the genomic landscape of Myeloproliferative Neoplasms (MPNs), the pathological mechanisms underlying abnormal megakaryocyte (Mk)-stromal crosstalk and fibrotic progression in MPNs remain unclear. We conducted mass spectrometry-based proteomics on mice with Romiplostim-dependent myelofibrosis to reveal alterations in signaling pathways and protein changes in Mks, platelets, and bone marrow (BM) cells. The chemokine Platelet Factor 4 (PF4)/Cxcl4 was up-regulated in all proteomes and increased in plasma and BM fluids of fibrotic mice. High TPO concentrations sustained in vitro PF4 synthesis and secretion in cultured Mks, while Ruxolitinib restrains the abnormal PF4 expression in vivo. We discovered that PF4 is rapidly internalized by stromal cells through surface glycosaminoglycans (GAGs) to promote myofibroblast differentiation. Cxcl4 gene silencing in Mks mitigated the profibrotic phenotype of stromal cells in TPO-saturated co-culture conditions. Consistently, extensive stromal PF4 uptake and altered GAGs deposition were detected in Romiplostim-treated, JAK2V617F mice and BM biopsies of MPN patients. BM PF4 levels and Mk/platelet CXCL4 expression were elevated in patients, exclusively in overt fibrosis. Finally, pharmacological inhibition of GAGs ameliorated in vivo fibrosis in Romiplostim-treated mice. Thus, our findings highlight the critical role of PF4 in the fibrosis progression of MPNs and substantiate the potential therapeutic strategy of neutralizing PF4-GAGs interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biochemical pathways and functional biological processes associated with differentially expressed proteins in myelofibrosis.
Fig. 2: High thrombopoietin concentrations induce PF4 synthesis and release from megakaryocytes.
Fig. 3: PF4 induces a profibrotic phenotype in stimulated stromal cells.
Fig. 4: Cxcl4 knockdown in megakaryocytes mitigates the acquisition of an activated phenotype in co-cultured stromal cells.
Fig. 5: Glycosaminoglycans (GAGs) mediate PF4 uptake and profibrotic effects in stromal cells.
Fig. 6: In vivo pharmacological inhibition of GAGs prevents PF4-GAGs interaction, PF4 uptake and ameliorates fibrosis.
Fig. 7: PF4 is increased in MPN patients, correlates with fibrosis stage and co-localize with CSPG and stromal cells in patients with overt PMF.

Similar content being viewed by others

Data availability

Proteomic data have been deposited to the UNIMI Dataverse repository, accessible at: https://doi.org/10.13130/RD_UNIMI/RI3IDJ.

Change history

  • 27 March 2025

    The original online version of this article was revised: In this article the author’s name Niccolò Bartalucci was incorrectly written as Bartalucci Niccolò. The original article has been corrected.

  • 01 April 2025

    A Correction to this paper has been published: https://doi.org/10.1038/s41375-025-02587-6

References

  1. Malara A, Balduini A. Blood platelet production and morphology. Thrombosis Res. 2012;129:241–4.

    Article  CAS  Google Scholar 

  2. Patel SR, Hartwig JH, Italiano JE. The biogenesis of platelets from megakaryocyte proplatelets. J Clin Invest. 2005;115:3348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994;369:565–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bruns I, Lucas D, Pinho S, Ahmed J, Lambert MP, Kunisaki Y, et al. Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med. 2014;20:1315–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Avecilla ST, Hattori K, Heissig B, Tejada R, Liao F, Shido K, et al. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med. 2004;10:64–71.

    Article  CAS  PubMed  Google Scholar 

  6. Malara A, Currao M, Gruppi C, Celesti G, Viarengo G, Buracchi C, et al. Megakaryocytes contribute to the bone marrow-matrix environment by expressing fibronectin, type IV collagen, and laminin. Stem Cells. 2014;32:926–37.

    Article  CAS  PubMed  Google Scholar 

  7. Wang J, Xie J, Wang D, Han X, Chen M, Shi G, et al. CXCR4high megakaryocytes regulate host-defense immunity against bacterial pathogens. Elife. 2022;11:e78662.

  8. Sun S, Jin C, Si J, Lei Y, Chen K, Cui Y, et al. Single-cell analysis of ploidy and the transcriptome reveals functional and spatial divergency in murine megakaryopoiesis. Blood. 2021;138:1211–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Woods B, Chen W, Chiu S, Marinaccio C, Fu C, Gu L, et al. Activation of JAK/STAT signaling in megakaryocytes sustains myeloproliferation. Clin Cancer Res. 2019;25:5901–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vardiman JW, Thiele J, Arber DA, Brunning RD, Borowitz MJ, Porwit A, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114:937–51.

    Article  CAS  PubMed  Google Scholar 

  11. Vannucchi AM, Guglielmelli P, Tefferi A. Advances in understanding and management of myeloproliferative neoplasms. CA Cancer J Clin. 2009;59:171–91.

    Article  PubMed  Google Scholar 

  12. Waksal JA, Mascarenhas J. Novel therapies in myelofibrosis: beyond JAK inhibitors. Curr Hematol Malig Rep. 2022;17:140–54.

    Article  PubMed  Google Scholar 

  13. James C, Ugo V, Le Couédic JP, Staerk J, Delhommeau F, Lacout C, et al. A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature. 2005;434:1144–8.

    Article  CAS  PubMed  Google Scholar 

  14. Pikman Y, Lee BH, Mercher T, McDowell E, Ebert BL, Gozo M, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3:e270.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Nangalia J, Massie CE, Baxter EJ, Nice FL, Gundem G, Wedge DC, et al. Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. N. Engl J Med. 2013;369:2391–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hasselbalch HC, Bjørn ME. MPNs as inflammatory diseases: the evidence, consequences, and perspectives. Mediat Inflamm. 2015;2015:102476.

    Article  Google Scholar 

  17. Malara A, Gruppi C, Abbonante V, Cattaneo D, De Marco L, Massa M, et al. EDA fibronectin-TLR4 axis sustains megakaryocyte expansion and inflammation in bone marrow fibrosis. J Exp Med. 2019;216:587–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Domon B, Aebersold R. Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol. 2010;28:710–21.

    Article  CAS  PubMed  Google Scholar 

  19. Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine Growth Factor Rev. 2013;24:133–45.

    Article  CAS  PubMed  Google Scholar 

  20. Malara A, Abbonante V, Zingariello M, Migliaccio A, Balduini A. Megakaryocyte contribution to bone marrow fibrosis: many arrows in the quiver. Mediterr J Hematol Infect Dis. 2018;10:e2018068.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lambert MP, Wang Y, Bdeir KH, Nguyen Y, Kowalska MA, Poncz M. Platelet factor 4 regulates megakaryopoiesis through low-density lipoprotein receptor-related protein 1 (LRP1) on megakaryocytes. Blood. 2009;114:2290–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lasagni L, Francalanci M, Annunziato F, Lazzeri E, Giannini S, Cosmi L, et al. An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. J Exp Med. 2003;197:1537–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Le HT, Golla K, Karimi R, Hughes MR, Lakschevitz F, Cines DB, et al. Platelet factor 4 (CXCL4/PF4) upregulates matrix metalloproteinase-2 (MMP-2) in gingival fibroblasts. Sci Rep. 2022;12:18636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kai Y, Yoneyama H, Koyama J, Hamada K, Kimura H, Matsushima K. Treatment with chondroitinase ABC alleviates bleomycin-induced pulmonary fibrosis. Med Mol Morphol. 2007;40:128–40.

    Article  CAS  PubMed  Google Scholar 

  25. Zou XH, Foong WC, Cao T, Bay BH, Ouyang HW, Yip GW. Chondroitin sulfate in palatal wound healing. J Dent Res. 2004;83:880–5.

    Article  CAS  PubMed  Google Scholar 

  26. Schneider RK, Mullally A, Dugourd A, Peisker F, Hoogenboezem R, Van Strien PMH, et al. Gli1+ Mesenchymal Stromal Cells Are a Key Driver of Bone Marrow Fibrosis and an Important Cellular Therapeutic Target. Cell Stem Cell. 2017;20:785–800.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ozono Y, Shide K, Kameda T, Kamiunten A, Tahira Y, Sekine M, et al. Neoplastic fibrocytes play an essential role in bone marrow fibrosis in Jak2V617F-induced primary myelofibrosis mice. Leukemia. 2021;35:454–67.

  28. Verstovsek S, Manshouri T, Pilling D, Bueso-Ramos CE, Newberry KJ, Prijic S, et al. Role of neoplastic monocyte-derived fibrocytes in primary myelofibrosis. J Exp Med. 2016;213:1723–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Decker M, Martinez-Morentin L, Wang G, Lee Y, Liu Q, Leslie J, et al. Leptin-receptor-expressing bone marrow stromal cells are myofibroblasts in primary myelofibrosis. Nat Cell Biol. 2017;19:677–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hasan S, Lacout C, Marty C, Cuingnet M, Solary E, Vainchenker W, et al. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNα. Blood. 2013;122:1464–77.

    Article  CAS  PubMed  Google Scholar 

  31. Koschmieder S, Mughal TI, Hasselbalch HC, Barosi G, Valent P, Kiladjian JJ, et al. Myeloproliferative neoplasms and inflammation: whether to target the malignant clone or the inflammatory process or both. Leukemia. 2016;30:1018–24.

    Article  CAS  PubMed  Google Scholar 

  32. Tefferi A, Vaidya R, Caramazza D, Finke C, Lasho T, Pardanani A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15 levels are independently prognostic in primary myelofibrosis: a comprehensive cytokine profiling study. J Clin Oncol. 2011;29:1356–63.

    Article  CAS  PubMed  Google Scholar 

  33. Abbonante V, Di Buduo CA, Gruppi C, Malara A, Gianelli U, Celesti G, et al. Thrombopoietin/TGF-?1 loop regulates megakaryocyte extracellular matrix component synthesis. Stem Cells. 2016;34:1123–33.

    Article  CAS  PubMed  Google Scholar 

  34. Ceglia I, Dueck AC, Masiello F, Martelli F, He W, Federici G, et al. Preclinical rationale for TGF-β inhibition as a therapeutic target for the treatment of myelofibrosis. Exp Hematol. 2016;44:1138–55.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Chagraoui H, Komura E, Tulliez M, Giraudier S, Vainchenker W, Wendling F. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100:3495–503.

    Article  CAS  PubMed  Google Scholar 

  36. Zingariello M, Martelli F, Ciaffoni F, Masiello F, Ghinassi B, D’Amore E, et al. Characterization of the TGF-β1 signaling abnormalities in the Gata1low mouse model of myelofibrosis. Blood. 2013;121:3345–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bock O, Loch G, Büsche G, von Wasielewski R, Schlué J, Kreipe H. Aberrant expression of platelet-derived growth factor (PDGF) and PDGF receptor-alpha is associated with advanced bone marrow fibrosis in idiopathic myelofibrosis. Haematologica. 2005;90:133–4.

    CAS  PubMed  Google Scholar 

  38. Ciurea SO, Merchant D, Mahmud N, Ishii T, Zhao Y, Hu W, et al. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood. 2007;110:986–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Zhan H, Ma Y, Lin CH, Kaushansky K. JAK2V617F-mutant megakaryocytes contribute to hematopoietic stem/progenitor cell expansion in a model of murine myeloproliferation. Leukemia. 2016;30:2332–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shen Z, Du W, Perkins C, Fechter L, Natu V, Maecker H, et al. Platelet transcriptome identifies progressive markers and potential therapeutic targets in chronic myeloproliferative neoplasms. Cell Rep. Med. 2021;2:100425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jain K, Tyagi T, Du J, Hu X, Patell K, Martin KA, et al. Unfolded protein response differentially modulates the platelet phenotype. Circ Res. 2022;131:290–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mbiandjeu S, Balduini A, Malara A. Megakaryocyte cytoskeletal proteins in platelet biogenesis and diseases. Thromb Haemost. 2022;122:666–78.

    Article  PubMed  Google Scholar 

  43. Ghalloussi D, Dhenge A, Bergmeier W. New insights into cytoskeletal remodeling during platelet production. J Thromb Haemost. 2019;17:1430–9.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Poulter NS, Thomas SG. Cytoskeletal regulation of platelet formation: coordination of F-actin and microtubules. Int J Biochem Cell Biol. 2015;66:69–74.

    Article  CAS  PubMed  Google Scholar 

  45. Chang Y, Auradé F, Larbret F, Zhang Y, Le Couedic JP, Momeux L, et al. Proplatelet formation is regulated by the Rho/ROCK pathway. Blood. 2007;109:4229–36.

    Article  CAS  PubMed  Google Scholar 

  46. Murphy-Ullrich JE. Thrombospondin 1 and its diverse roles as a regulator of extracellular matrix in fibrotic disease. J Histochem Cytochem. 2019;67:683–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Muth M, Engelhardt BM, Kröger N, Hussein K, Schlué J, Büsche G, et al. Thrombospondin-1 (TSP-1) in primary myelofibrosis (PMF) - a megakaryocyte-derived biomarker which largely discriminates PMF from essential thrombocythemia. Ann Hematol. 2011;90:33–40.

    Article  CAS  PubMed  Google Scholar 

  48. Evrard S, Bluteau O, Tulliez M, Rameau P, Gonin P, Zetterberg E, et al. Thrombospondin-1 is not the major activator of TGF-β1 in thrombopoietin-induced myelofibrosis. Blood. 2011;117:246–9.

    Article  CAS  PubMed  Google Scholar 

  49. Leimkühler NB, Gleitz HFE, Ronghui L, Snoeren IAM, Fuchs SNR, Nagai JS, et al. Heterogeneous bone-marrow stromal progenitors drive myelofibrosis via a druggable alarmin axis. Cell Stem Cell. 2021;28:637–52.e8.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Affandi AJ, Carvalheiro T, Ottria A, de Haan JJ, Brans MAD, Brandt MM, et al. CXCL4 drives fibrosis by promoting several key cellular and molecular processes. Cell Rep. 2022;38:110189.

    Article  CAS  PubMed  Google Scholar 

  51. Buka RJ, Montague SJ, Moran LA, Martin EM, Slater A, Watson SP, et al. PF4 activates the c-Mpl-Jak2 pathway in platelets. Blood. 2024;143:64–9.

    Article  CAS  PubMed  Google Scholar 

  52. Gleitz HFE, Dugourd AJF, Leimkühler NB, Snoeren IAM, Fuchs SNR, Menzel S, et al. Increased CXCL4 expression in hematopoietic cells links inflammation and progression of bone marrow fibrosis in MPN. Blood. 2020;136:2051–64.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Martinaud C, Desterke C, Konopacki J, Pieri L, Torossian F, Golub R, et al. Osteogenic potential of mesenchymal stromal cells contributes to primary myelofibrosis. Cancer Res. 2015;75:4753–65.

    Article  CAS  PubMed  Google Scholar 

  54. Korf-Klingebiel M, Reboll MR, Grote K, Schleiner H, Wang Y, Wu X, et al. Heparan sulfate-editing extracellular sulfatases enhance VEGF bioavailability for ischemic heart repair. Circ Res. 2019;125:787–801.

    Article  CAS  PubMed  Google Scholar 

  55. Warford JR, Lamport AC, Clements DR, Malone A, Kennedy BE, Kim Y, et al. Surfen, a proteoglycan binding agent, reduces inflammation but inhibits remyelination in murine models of Multiple Sclerosis. Acta Neuropathol Commun. 2018;6:4.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thompson S, Martínez-Burgo B, Sepuru KM, Rajarathnam K, Kirby JA, Sheerin NS, et al. Regulation of chemokine function: the roles of GAG-binding and post-translational nitration. Int J Mol Sci. 2017;18:1692.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Leoni P, Rupoli S, Lai G, Brunelli MA, Belmonte MM, Pugnaloni A, et al. Platelet abnormalities in idiopathic myelofibrosis: functional, biochemical and immunomorphological correlations. Haematologica. 1994;79:29–39.

    CAS  PubMed  Google Scholar 

  58. Małecki R, Gacka M, Kuliszkiewicz-Janus M, Jakobsche-Policht U, Kwiatkowski J, Adamiec R, et al. Altered plasma fibrin clot properties in essential thrombocythemia. Platelets. 2016;27:110–6.

    PubMed  Google Scholar 

  59. Meier-Abt F, Wolski WE, Tan G, Kummer S, Amon S, Manz MG, et al. Reduced CXCL4/PF4 expression as a driver of increased human hematopoietic stem and progenitor cell proliferation in polycythemia vera. Blood Cancer J. 2021;11:31.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Katoh O, Kimura A, Kuramoto A. Platelet-derived growth factor is decreased in patients with myeloproliferative disorders. Am J Hematol. 1988;27:276–80.

    Article  CAS  PubMed  Google Scholar 

  61. Starlinger P, Moll HP, Assinger A, Nemeth C, Hoetzenecker K, Gruenberger B, et al. Thrombospondin-1: a unique marker to identify in vitro platelet activation when monitoring in vivo processes. J Thromb Haemost. 2010;8:1809–19.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Amgen Inc for providing Romiplostim-Nplate®; the animal facility and the OPBA of the University of Pavia for hosting the animals and support in animal protocol drawing up and the Unitech OMICs platform at the University of Milan for Orbitrap LC-MS/MS analysis. We thank Prof. Christian Di Buduo and Dr. Carolina Paula Miguel (University of Pavia) for technical assistance with confocal microscopy analysis. This paper was supported by Associazione Italiana per la Ricerca sul Cancro (AIRC MFAG 2020 24541) to AM, (AIRC IG 2016 18700) to AB; Italian Ministry of University and Research (PRIN 2017-Z5LR5Z) to AB; Italian Ministry of Health (Ricerca Finalizzata Giovani Ricercatori GR-2016-02363136) to AM and VA, Cariplo Foundation (2018-0525) to AM.

Author information

Authors and Affiliations

Authors

Contributions

DCap, FRC performed experiments, collected, and analyzed data, and wrote the manuscript. VA and MM performed experiments, collected and analyzed data. CG conceived the study and provided intellectual input. DCat, CB and AI recruited and governed the patient’s ethics, performed experiments, analyzed data, and helped to draft the manuscript. NB and AMV provided specimens from JAK2floxed/+ and JAK2V617F/+ mice. UG interpreted the data and helped write the manuscript. DT helped with histopathological analyses. AB and AM conceived the study, interpreted the data and helped write the manuscript. All authors provided input on and reviewed the manuscript.

Corresponding authors

Correspondence to Alessandra Balduini or Alessandro Malara.

Ethics declarations

Competing interests

AI is speaker honoraria from AOP Health, BMS, GSK, Incyte, Novartis and Pfizer. DC is speaker honoraria from BMS, GSK, Incyte, Novartis and Pfizer; the remaining authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: In this article the author’s name Niccolò Bartalucci was incorrectly written as Bartalucci Niccolò. The original article has been corrected.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capitanio, D., Calledda, F.R., Abbonante, V. et al. Proteomic screening identifies PF4/Cxcl4 as a critical driver of myelofibrosis. Leukemia 38, 1971–1984 (2024). https://doi.org/10.1038/s41375-024-02354-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-024-02354-z

This article is cited by

Search

Quick links