Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

MYELODYSPLASTIC NEOPLASM

Clonal hematopoiesis in large granular lymphocytic leukemia

Abstract

Past studies described occasional patients with myeloid neoplasms (MN) and coexistent large granular lymphocytic leukemia (LGLL) or T-cell clonopathy of unknown significance (TCUS), which may represent expansion of myeloid clonal hematopoiesis (CH) as triggers or targets of clonal cytotoxic T cell reactions. We retrospectively analyzed 349 LGLL/TCUS patients, 672 MN patients, and 1443 CH individuals to establish the incidence, genetic landscape, and clinical phenotypes of CH in LGLL. We identified 8% of cases overlapping with MN, while CH was found in an additional 19% of cases (CH + /LGLL) of which TET2 (23%) and DNMT3A (14%) were the most common. In MN cohort, 3% of cases showed coexistent LGLL. The incidence of CH in LGLL was exceedingly higher than age-matched CH controls (P < 0.0001). By multivariate analysis, the presence of CH in LGLL (P = 0.026) was an independent risk factor for cytopenia in addition to older age (P = 0.003), splenomegaly (P = 0.015) and STAT3/5B mutations (P = 0.001). CH + /LGLL cases also showed a higher progression rate to MN than CH-/LGLL (10% vs. 2% at 5 years; P = 0.02). A close relationship between CH and LGLL suggests that cytopenia in LGLL may be not only related to LGLL but be also secondary to coexisting clonal cytopenia of unclear significance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cytopenia according to CH in LGLL.
Fig. 2: Comparison of molecular patterns of CH and MN in LGLL and typical CHIP individuals.
Fig. 3: Impact of CH in LGLL on clinical outcomes.
Fig. 4: Schematic summary.

Similar content being viewed by others

Data availability

All data to reproduce our study are presented in the manuscript and supplemental material. Additional information can be requested, if needed, by e-mailing the corresponding author.

References

  1. Loughran TP Jr., Kadin ME, Starkebaum G, Abkowitz JL, Clark EA, Disteche C, et al. Leukemia of large granular lymphocytes: association with clonal chromosomal abnormalities and autoimmune neutropenia, thrombocytopenia, and hemolytic anemia. Ann Intern Med. 1985;102:169–75.

    Article  PubMed  Google Scholar 

  2. Loughran TP Jr, Starkebaum G. Clinical features in large granular lymphocytic leukemia. Blood. 1987;69:1786.

    Article  PubMed  Google Scholar 

  3. Lamy T, Moignet A, Loughran TP Jr. LGL leukemia: from pathogenesis to treatment. Blood. 2017;129:1082–94.

    Article  CAS  PubMed  Google Scholar 

  4. Sanikommu SR, Clemente MJ, Chomczynski P, Afable MG 2nd, Jerez A, et al. Clinical features and treatment outcomes in large granular lymphocytic leukemia (LGLL). Leuk Lymphoma. 2018;59:416–22.

    Article  PubMed  Google Scholar 

  5. Viny AD, Lichtin A, Pohlman B, Loughran T, Maciejewski J. Chronic B-cell dyscrasias are an important clinical feature of T-LGL leukemia. Leuk Lymphoma. 2008;49:932–8.

    Article  CAS  PubMed  Google Scholar 

  6. Pawarode A, Baer M. T/B and not T/B: high frequency of B-cell dyscrasias in T-LGL leukemia. Leuk Lymphoma. 2008;49:845–6.

    Article  PubMed  Google Scholar 

  7. Sidiqi MH, Aljama MA, Viswanatha DS, Dingli D. T-cell large granular lymphocytic leukemia and plasma cell disorders. Haematologica. 2019;104:e108–10.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sokol L, Loughran TP Jr. Large granular lymphocyte leukemia. Oncologist. 2006;11:263–73.

    Article  CAS  PubMed  Google Scholar 

  9. Komrokji RS, Ali NA, Sallman D, Padron E, Lancet J, Sokol L, et al. Characterization of myelodysplastic syndromes (MDS) with T-cell large granular lymphocyte proliferations (LGL). Leukemia. 2020;34:3097–9.

    Article  PubMed  Google Scholar 

  10. Zhang X, Sokol L, Bennett JM, Moscinski LC, List A, Zhang L. T-cell large granular lymphocyte proliferation in myelodysplastic syndromes: Clinicopathological features and prognostic significance. Leuk Res. 2016;43:18–23.

    Article  PubMed  Google Scholar 

  11. Saunthararajah Y, Molldrem JL, Rivera M, Williams A, Stetler-Stevenson M, Sorbara L, et al. Coincident myelodysplastic syndrome and T-cell large granular lymphocytic disease: clinical and pathophysiological features. Br J Haematol. 2001;112:195–200.

    Article  CAS  PubMed  Google Scholar 

  12. Epling-Burnette PK, Painter JS, Rollison DE, Ku E, Vendron D, Widen R, et al. Prevalence and clinical association of clonal T-cell expansions in Myelodysplastic Syndrome. Leukemia. 2007;21:659–67.

    Article  CAS  PubMed  Google Scholar 

  13. Bravo-Perez C, Gurnari C. A tower of babel of acronyms? The shadowlands of MGUS/MBL/CHIP/TCUS. Semin Hematol. 2024;61:43–50.

  14. Swerdlow SH CE, Harris NL, et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues, vol. 2. IARC Press, 2017.

  15. Poullot E, Zambello R, Leblanc F, Bareau B, De March E, Roussel M, et al. Chronic natural killer lymphoproliferative disorders: characteristics of an international cohort of 70 patients. Ann Oncol. 2014;25:2030–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jaiswal S, Fontanillas P, Flannick J, Manning A, Grauman PV, Mar BG, et al. Age-related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371:2488–98.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Xie M, Lu C, Wang J, McLellan MD, Johnson KJ, Wendl MC, et al. Age-related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20:1472–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uddin MDM, Nguyen NQH, Yu B, Brody JA, Pampana A, Nakao T, et al. Clonal hematopoiesis of indeterminate potential, DNA methylation, and risk for coronary artery disease. Nat Commun. 2022;13:5350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Buscarlet M, Provost S, Zada YF, Barhdadi A, Bourgoin V, Lépine G, et al. DNMT3A and TET2 dominate clonal hematopoiesis and demonstrate benign phenotypes and different genetic predispositions. Blood. 2017;130:753–62.

    Article  CAS  PubMed  Google Scholar 

  20. Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article  PubMed  PubMed Central  Google Scholar 

  21. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gurnari C, Wahida A, Pagliuca S, Durmaz A, Zawit M, Haferlach T, et al. A study of Telomerase Reverse Transcriptase rare variants in myeloid neoplasia. Hematol Oncol. 2022;40:812–7.

    Article  CAS  PubMed  Google Scholar 

  23. Adema V, Palomo L, Walter W, Mallo M, Hutter S, La Framboise T, et al. Pathophysiologic and clinical implications of molecular profiles resultant from deletion 5q. EBioMedicine. 2022;80:104059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kongkiatkamon S, Pagliuca S, Adema V, Nagata Y, Kerr CM, Walter W, et al. Molecular characterization of the histone acetyltransferase CREBBP/EP300 genes in myeloid neoplasia. Leukemia. 2022;36:1185–8.

    Article  CAS  PubMed  Google Scholar 

  25. Cheon H, Xing JC, Moosic KB, Ung J, Chan VW, Chung DS, et al. Genomic landscape of TCRαβ and TCRγδ T-large granular lymphocyte leukemia. Blood. 2022;139:3058–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Olson TL, Cheon H, Xing JC, Olson KC, Paila U, Hamele CE, et al. Frequent somatic TET2 mutations in chronic NK-LGL leukemia with distinct patterns of cytopenias. Blood. 2021;138:662–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Baer C, Kimura S, Rana MS, Kleist AB, Flerlage T, Feith DJ, et al. CCL22 mutations drive natural killer cell lymphoproliferative disease by deregulating microenvironmental crosstalk. Nat Genet. 2022;54:637–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Niroula A, Sekar A, Murakami MA, Trinder M, Agrawal M, Wong WJ, et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med. 2021;27:1921–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Genovese G, Kahler AK, Handsaker RE, Lindberg J, Rose SA, Bakhoum SF, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371:2477–87.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–19.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nagata Y, Makishima H, Kerr CM, Przychodzen BP, Aly M, Goyal A, et al. Invariant patterns of clonal succession determine specific clinical features of myelodysplastic syndromes. Nat Commun. 2019;10:5386.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bernstein N, Spencer Chapman M, Nyamondo K, Chen Z, Williams N, Mitchell E, et al. Analysis of somatic mutations in whole blood from 200,618 individuals identifies pervasive positive selection and novel drivers of clonal hematopoiesis. Nat Genet. 2024;56:1147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beauchamp EM, Leventhal M, Bernard E, Hoppe ER, Todisco G, Creignou M, et al. ZBTB33 is mutated in clonal hematopoiesis and myelodysplastic syndromes and impacts RNA splicing. Blood Cancer Discov. 2021;2:500–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Slavin TP, Teh JB, Weitzel JN, Peng K, Wong FL, Qin H, et al. Association between clonal hematopoiesis and late nonrelapse mortality after autologous hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2019;25:2517–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kewan T, Durmaz A, Bahaj W, Gurnari C, Terkawi L, Awada H, et al. Molecular patterns identify distinct subclasses of myeloid neoplasia. Nat Commun. 2023;14:3136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Koskela HL, Eldfors S, Ellonen P, van Adrichem AJ, Kuusanmäki H, Andersson EI, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366:1905–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Barilà G, Grassi A, Cheon H, Teramo A, Calabretto G, Chahal J, et al. Tγδ LGLL identifies a subset with more symptomatic disease: analysis of an international cohort of 137 patients. Blood. 2023;141:1036–46.

    Article  PubMed  Google Scholar 

  38. Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, et al. Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell. 2011;20:11–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Huerga Encabo H, Aramburu IV, Garcia-Albornoz M, Piganeau M, Wood H, Song A, et al. Loss of TET2 in human hematopoietic stem cells alters the development and function of neutrophils. Cell Stem Cell. 2023;30:781–99.e789.

    Article  CAS  PubMed  Google Scholar 

  40. Kahles A, Lehmann KV, Toussaint NC, Hüser M, Stark SG, Sachsenberg T, et al. Comprehensive analysis of alternative splicing across tumors from 8705 patients. Cancer Cell. 2018;34:211–24.e216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Biernacki MA, Lok J, Black RG, Foster KA, Cummings C, Woodward KB, et al. Discovery of U2AF1 neoantigens in myeloid neoplasms. J Immunother Cancer. 2023;11:e007490.

Download references

Acknowledgements

This work was supported by the R35HL135795 (to J.P.M.); the Edward P. Evans Foundation (to C.G.); Case Comprehensive Cancer Center and VeloSano Bike to Cure Award (to C.G. & A.D.) and AA&MDSIF (to C.B-P., V.V., J.P.M); VeloSano 9 Pilot Award (to V.V.). N.K. has a postdoctoral fellowship from Astellas Foundation for Research on Metabolic Disorders and the Uehara Memorial Foundation. C.B-P. has a postdoctoral fellowship from Instituto de Salud Carlos III (JR22/00041).

Author information

Authors and Affiliations

Authors

Contributions

N.K. supervised the study, collected, analyzed, interpreted clinical and molecular data and wrote the manuscript; C.G., C.B-P. L.G. and V.V. collected, analyzed, interpreted clinical and molecular data and edited the manuscript. Y.K. and A.D. analyzed molecular data, S.P., N.W., A.A., D.D. and F.U. collected clinical and molecular data. H.E.C. and A.S interpreted clinical and molecular data and edited the manuscript. J.P.M. provided invaluable help with the manuscript preparation, generated and conceived the study design, designed figures and tables, and wrote the manuscript. All authors participated in the critical review of the final paper and submission.

Corresponding author

Correspondence to Jaroslaw P. Maciejewski.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Ethics approval and consent to participate

This research included human subjects in accordance with the Declaration of Helsinki. Informed consent was obtained from patients after approval by the Internal review board (Irb 5024 and 15–1278).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawashima, N., Gurnari, C., Bravo-Perez, C. et al. Clonal hematopoiesis in large granular lymphocytic leukemia. Leukemia 39, 451–459 (2025). https://doi.org/10.1038/s41375-024-02460-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41375-024-02460-y

This article is cited by

Search

Quick links