Table 2 Summary of network-only strategy

From: On the use of deep learning for phase recovery

Task

Reference

Input

Output

Network

Training dataset

Loss function

Dataset-driven (DD) approach

Sinha et al.114

Diffraction image

Phase

U-Net and ResNet

Expt.: 10,000 pairs

l1-norm

Li et al.115

Diffraction image

Phase

U-Net and ResNet

Expt.: 10,000 pairs

NPCC

Deng et al.117

Diffraction image

Phase

U-Net and ResNet

Expt.: 10,000 pairs

NPCC

Goy et al.118

Weak-light diffraction

Phase

U-Net and ResNet

Expt.: 9500 pairs

NPCC

Wang et al.119

In-line hologram

Phase

U-Net and ResNet

Expt.: 9000 and 11,623 pairs

l2-norm

Nguyen et al.120

Multiple LR intensity images (Fourier ptychography)

HR phase

U-Net and DenseNet

Expt.: ---

GAN loss and l1-norm

Cheng et al.121

LR intensity image (Fourier ptychography)

HR phase and amplitude

CNN and ResNet

Expt.: 20 fields-of-view

l2-norm

Cherukara et al.122

Far-field diffraction

Phase or amplitude

SegNet (two)

Sim.: 180,000 pairs

Cross-entropy

Ren et al.123

Off-axis hologram

Phase or amplitude

ResNet and SubPixelNet

Expt.: >10,000 pairs

l2-norm

Yin et al.124

Hologram

Phase

U-Net

Expt.: 2400 and 200–2000 (unpaired)

Cycle-GAN loss

Lee et al.125

Hologram

Phase and amplitude

U-Net and CNN

Expt.: 600–9060 (unpaired)

Cycle-GAN loss and SSIM

Hu et al.126

Spots’ intensity image

Phase

U-Net and ResNet

Sim.: 46,080 pairs

l2-norm

Wang et al.127

Defocus intensity image

Phase

U-Net and ResNet

Expt.: 20,037 pairs

l2-norm

Zhou et al.128

LR defocus intensity image

HR phase

U-Net

Expt.: 1300 pairs

l2-norm

Pirone et al.129

Hologram in different angles

Phase

CAN

Expt.: 4000 pairs

l1-norm

Chang et al.130

Diffraction image (Electron)

Phase

U-Net and ResNet

Sim.: 250,000 pairs

l1-norm

Xue et al.132

Bright- and dark-field images

Phase

U-Net and BNN

Expt.: 185 groups

l1-norm and uncertainty term

Li et al.133

Two images of symmetric illumination

Phase

U-Net

Sim.: 1301 groups

GAN loss

Wang et al.90,134

Hologram

Phase and amplitude

Y-Net

Expt.: 1331 pairs

l2-norm

Zeng et al.135

Hologram

Phase or amplitude

CapsNet

Expt.: ---

l2-norm

Wu et al.136

Far-field diffraction

Phase and amplitude

Y-Net

Sim.: 142,500 groups

Loss in real and reciprocal space

Huang et al.137

Two or 3 holograms

Complex field

U-Net and Recurrent CNN

Expt.: 208 groups

GAN loss and l1-norm and SSIM

Uelwer et al.138

Far-field diffraction

Phase

Cascaded neural network

Sim.: ---

l2-norm or l1-norm

Castaneda et al.139

Off-axis hologram

Wrapped phase

U-Net

Expt.: 1512 pairs

GAN loss and TSM and STD

Jaferzadeh et al.140

Off-axis hologram

Phase

U-Net

Expt.: 900 pairs

GAN loss

Luo et al.141

Hologram

Phase

MCN

Expt.: 1 pair

Bucket error rate (BER) loss

Ding et al.142

LR image

HR phase

U-Net and Swin Transformer

Expt.: 3500 and 3500 (unpaired)

Cycle-GAN loss

Ye et al.144

Far-field diffraction

Complex field

MLP and CNN

Sim. and Expt.: ---

l1-norm

Chen et al.145,146

Three or 4 holograms

Complex field

ResNet and Fourier module (FIN)

Expt.: 600 groups

l1-norm, complex domain and perceptual loss

Shu et al.147

Hologram

Phase

Network based on NAS

Expt.: 276 pairs

MixGE and binary and sparsity loss

Physics-driven (PD) approach

Boominathan et al.149

LR intensity images (Fourier ptychography)

HR Phase and amplitude

U-Net

Sim.: 1 (input only)

l2-norm with physical model

Wang et al.150

Diffraction image

Phase

U-Net

Sim. and Expt.: 1 (input only)

l2-norm with physical model

Zhang et al.151

Diffraction image

Phase

U-Net

Sim. and Expt.: 1 (input only)

l2-norm with defocus distance and physical model

Yang et al.152,153

Diffraction image

Phase and amplitude

U-Net

Sim. and Expt.: 1–180 (input only)

l2-norm with aperture constraint and physical model

Bai et al.154

Hologram

dual-wavelength Phase

CDD

Expt.: 1 (input only)

l2-norm with physical model

Galande et al.155

Hologram

Phase and amplitude

U-Net

Expt.: 1 (input only)

l2-norm with physical model and denoiser

Yao et al.159

3D diffraction image

Phase and amplitude

3D Y-Net

Sim.: 52,000 (input only)

l2-norm with physical model

Li et al.160

Two diffraction images

Phase

Two-to-one Y-Net

Sim.: 500 (input only)

l2-norm with physical model

Bouchama et al.161

LR intensity images (Fourier ptychography)

HR Phase and amplitude

U-Net

Sim.: 10,000 (input only)

l2-norm with physical model

Huang et al.162

Two holograms

Phase and amplitude

GedankenNet

Sim.: 100,000 (input only)

l2-norm and Fourier-domain l1-norm

  1. “---” indicates not available