Table 1 With \(\varphi ={\mathrm{atan}}\left(y,x\right)\), the first row shows the phase singularities attached to each polarization of a \(\left(m,\lambda \right)\) beam of well-defined \({\text{TAM}}=m\) and helicity \(\lambda =\pm 1\)

From: Light structuring via nonlinear total angular momentum addition with flat optics

 

\({{\bf{e}}}_{R}=\left(\hat{{\bf{x}}}+{\text{i}}\hat{{\bf{y}}}\right)/\sqrt{2}\)

\({{\bf{e}}}_{L}=\left(\hat{{\bf{x}}}-{\text{i}}\hat{{\bf{y}}}\right)/\sqrt{2}\)

\({{\bf{e}}}_{z}\)

\(\left(m,{\rm{\lambda }}\right)\)

\({\theta }_{\max }\to 0,\left(m,1\right)\)

\({\theta }_{\max }\to 0,\left(m,-1\right)\)

\({J}_{m-1}\exp \left({\text{i}}\left(m-1\right)\varphi \right)\)

\(\to {J}_{m-1}\exp \left({\text{i}}\left(m-1\right)\varphi \right)\)

\(\to 0\)

\({J}_{m+1}\exp \left({\text{i}}\left(m+1\right)\varphi \right)\)

\(\to 0\)

\(\to {J}_{m+1}\exp \left(\text{i}\left(m+1\right)\varphi \right)\)

\({J}_{m}\exp \left(\text{i}\mathrm{m\varphi }\right)\)

\(\to 0\)

\(\to 0\)

  1. The argument of the Bessel functions \({J}_{n}\left(\cdot \right)\) is suppressed, as it changes with \(\theta \) in Eq. (3). The second and third rows show the dominant polarization component in the collimated limit (see Suppl. Inf. B)