Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ADORA1-driven brain-sympathetic neuro-adipose connections control body weight and adipose lipid metabolism

Abstract

It is essential to elucidate brain-adipocyte interactions in order to tackle obesity and its comorbidities, as the precise control of brain-adipose tissue cross-talk is crucial for energy and glucose homeostasis. Recent studies show that in the peripheral adipose tissue, adenosine induces adipogenesis through peripheral adenosine A1 receptor (pADORA1) signaling; however, it remains unclear whether systemic and adipose tissue metabolism would also be under the control of central (c) ADORA1 signaling. Here, we use tissue-specific pharmacology and metabolic tools to clarify the roles of cADORA1 signaling in energy and adipocyte physiology. We found that cADORA1 signaling reduces body weight while also inducing adipose tissue lipolysis. cADORA1 signaling also increases adipose tissue sympathetic norepinephrine content. In contrast, pADORA1 signaling facilitates a high-fat diet-induced obesity (DIO). We propose here a novel mechanism in which cADORA1 and pADORA1 signaling hinder and aggravate DIO, respectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Central ADORA1 signaling induces expenditure and adipose lipolysis.
Fig. 2: Central ADORA1 induces adipocyte remodeling and expressions of thermogenic markers.
Fig. 3: Central ADORA1 signaling increases adipose norepinephrine (NE) content.
Fig. 4: Peripheral chronic osmotic delivery of CPA promotes body weight gain.
Fig. 5: Peripheral ADORA1 modulates adipose gene expressions.
Fig. 6: Bi-directional regulation of body weight by intra-adipose CPA or CPT injections.
Fig. 7: Anxiogenic effects of central ADORA1 stimulation.
Fig. 8: No apparent effects of peripheral CPA administration on anxiety.

Similar content being viewed by others

References

  1. Schwabe U, Schonhofer PS, Ebert R. Facilitation by adenosine of the action of insulin on the accumulation of adenosine 3’:5’-monophosphate, lipolysis, and glucose oxidation in isolated fat cells. Eur J Biochem. 1974;46:537–45.

    Article  CAS  PubMed  Google Scholar 

  2. Green A. Catecholamines inhibit insulin-stimulated glucose transport in adipocytes, in the presence of adenosine deaminase. FEBS Lett. 1983;152:261–4.

    Article  CAS  PubMed  Google Scholar 

  3. Smith U, Kuroda M, Simpson IA. Counter-regulation of insulin-stimulated glucose transport in adipocytes in the presence of adenosine deaminase. J Biol Chem. 1984;259:8758–63.

    Article  CAS  PubMed  Google Scholar 

  4. Gnad T, Scheibler S, Kugelgen IV, Scheele C, Kilic A, Glode A, et al. Adenosine activates brown adipose tissue and recruits beige adipocytes via A2A receptors. Nature. 2014;516:395–9.

    Article  CAS  PubMed  Google Scholar 

  5. Fastbom J, Pazos A, Probst A, Palacios JM. Adenosine A1 receptors in the human brain: a quantitative autoradiographic study. Neuroscience. 1987;22:813–26.

    Article  CAS  PubMed  Google Scholar 

  6. Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24:31–55.

    Article  CAS  PubMed  Google Scholar 

  7. Klinger M, Freissmuth M, Nanoff C. Adenosine receptors: G protein-mediated signaling and the role of accessory proteins. Cell Signal 2002;14:99–108.

    Article  CAS  PubMed  Google Scholar 

  8. Winsky L, Harvey JA. Effects of N6-(L-phenylisopropyl) adenosine, caffeine, theophylline and rolipram on the acquisition of conditioned responses in the rabbit. J Pharm Exp Ther. 1987;241:223–9.

    CAS  Google Scholar 

  9. Alam MN, Szymusiak R, Gong H. Adenosinergic modulation of rat basal forebrain neurons during sleep and waking: neuronal recording with microdialysis. J Physiol. 1999;521:679–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Costenla AR, de Mendonca A, Ribeiro JA. Adenosine modulates synaptic plasticity in hippocampal slices from aged rats. Brain Res. 1999;851:228–34.

    Article  CAS  PubMed  Google Scholar 

  11. Zhang P, Bannon NM, Ilin V, Volgushev M, Chistiakova M. Adenosine effects on inhibitory synaptic transmission and excitation-inhibition balance in the rat neocortex. J Physiol. 2015;593:825–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Svenningsson P, Hall H, Sedvall G, Fredholm BB. Distribution of adenosine receptors in the postmortem human brain: an extended autoradiographic study. Synapse. 1997;27:322–35.

    Article  CAS  PubMed  Google Scholar 

  13. Chaudhuri A, Cohen RZ, Larocque S. Distribution of adenosine A1 receptors in primary visual cortex of developing and adult monkeys. Exp Brain Res. 1998;123:351–4.

    Article  CAS  PubMed  Google Scholar 

  14. Fredholm BB, Dunwiddie TV. How does adenosine inhibit transmitter release? Trends Pharm Sci. 1988;9:130–4.

    Article  CAS  PubMed  Google Scholar 

  15. Latini S, Pazzagli M, Pepeu G, Pedata F. A2 adenosine receptors: their presence and neuromodulatory role in the central nervous system. Gen Pharmacol. 1996;27:925–33.

    Article  CAS  PubMed  Google Scholar 

  16. Sebastião AM, Ribeiro JA. Adenosine A2 receptor-mediated excitatory actions on the nervous system. Prog Neurobiol. 1996;48:167–89.

    Article  PubMed  Google Scholar 

  17. Liu ZW, Gao XB. Adenosine inhibits activity of hypocretin/Orexin neurons by the A1 receptor in the lateral hypothalamus: A possible sleep-promoting effect. J Neurophysiol. 2006;97:837–48.

    Article  PubMed  CAS  Google Scholar 

  18. Fredholm BB, IJzerman AP, Jacobson KA, Linden J, Muller CE. International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev. 2001;63:1–34.

    Article  CAS  Google Scholar 

  19. Rosin DL, Hettinger BD, Lee A, Linden J. Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology. 2003;61:S12–8.

    Article  CAS  PubMed  Google Scholar 

  20. Yang Y, Atasoy D, Su HH, Sternson SM. Hunger states switch a flip-flop memory circuit via a synaptic AMPK-dependent positive feedback loop. Cell. 2011;146:992–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang L, Qi Y, Yang Y. Astrocytes control food intake by inhibiting AgRP neuron activity via adenosine A1 receptors. Cell Rep. 2015;11:798–807.

    Article  CAS  PubMed  Google Scholar 

  22. Zeng W, Pirzgalska RM, Pereira MM, Kubasova N, Barateiro A, Seixas E, et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell. 2015;163:84–94.

    Article  CAS  PubMed  Google Scholar 

  23. Jiang H, Ding X, Cao Y, Wang H, Zeng W. Dense intra-adipose sympathetic arborizations are essential for cold-induced beiging of mouse white adipose tissue. Cell Metab 2017;26:686–92.

    Article  CAS  PubMed  Google Scholar 

  24. Rooks CR, Penn DM, Kelso E, Bowers RR, Bartness TJ, Harris RBS. Sympathetic denervation does not prevent a reduction in fat pad size of rats or mice treated with peripherally administered leptin. Am J Physiol Regul Integr Comp Physiol. 2005;289:R92–102.

    Article  CAS  PubMed  Google Scholar 

  25. Li C, Hou Y, Zhang J, Sui G, Du X, Licinio J, et al. AGRP neurons modulate fasting-induced anxiolytic effects. Transl Psychiatry. 2019;9:111.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sweeney P, Qi Y, Xu Z, Yang Y. Activation of hypothalamic astrocyte suppresses feeding without altering emotional states. Glia. 2016;64:2263–73.

    Article  PubMed  Google Scholar 

  27. Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Front Neuroendocrinol. 2014;35:473–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Steculorum SM, Ruud J, Karakasilioti I, Backes H, Engstrom RL, Timper K, et al. Agrp neurons control systemic insulin sensitivity via myostatin expression in brown adipose tissue. Cell. 2016;165:125–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Soukas A, Cohen P, Socci ND, Friedman JM. Leptin-specific patterns of gene expression in white adipose tissue. Genes Dev. 2000;14:963–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Xie X, Yang H, An JJ, Houtz J, Tan JW, Xu H, et al. Activation of anxiogenic circuits instigates resistance to diet-induced obesity via increased energy expenditure. Cell Metab. 2019;29:917–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dietrich MO, Zimmer MR, Bober J, Horvath TL. Hypothalamic Agrp neurons drive stereotypic behaviors beyond feeding. Cell. 2015;160:1222–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Burnett CJ, Li C, Webber E, Tsaousidou E, Xue SY, Bruning JC, et al. Hunger-driven motivational state competition. Neuron. 2016;92:187–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Pickel VM, Chan J, Linden J, Rosin D. Subcellular distribution of adenosine A1 and A2A receptors in the rat dorsomedial nucleus of the solitary tract at the level of the area postrema. Synapse. 2006;60:496–509.

    Article  CAS  PubMed  Google Scholar 

  34. Henry FE, Sugino K, Tozer A, Branco T, Sternson SM. Cell type-specific transcriptomics of hypothalamic energy-sensing neuron responses to weight-loss. eLife. 2015;4:e09800.

    Article  PubMed Central  Google Scholar 

  35. Campbell JN, Macosko EZ, Fenselau H, Pers TH, Lyubetskaya A, Tenen D, et al. A molecular census of arcuate hypothalamus and median eminence cell types. Nat Neurosci. 2017;20:484–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Johansson SM, Lindgren E, Yang JN, Herling AW, Fredholm BB. Adenosine A1 receptors regulate lipolysis and lipogenesis in mouse adipose tissue-Interactions with insulin. Eur J Pharm. 2008;597:92–101.

    Article  CAS  Google Scholar 

  37. Pardo F, Villalobos-Labra R, Chiarello DI, Salsoso R, Toledo F, Gutierrez J, et al. Molecular implications of adenosine in obesity. Mol Asp Med. 2017;55:90–101.

    Article  CAS  Google Scholar 

  38. Friedman JM, Halaas J. Leptin and the regulation of body weight in mammals. Nature. 1998;395:763–70.

    Article  CAS  PubMed  Google Scholar 

  39. Harris RB, Mitchell TD, Yan X, Simpson JS, Redmann SM Jr. Metabolic responses to leptin in obese db/db mice are strain dependent. Am J Physiol Regulatory Integr Comp Physiol. 2001;281:R115–32.

    Article  CAS  Google Scholar 

  40. Salbe AD, Nicolson M, Ravussin E. Total energy expenditure and the level of physical activity correlate with plasma leptin concentrations in five-year-old children. J Clin Invest. 1997;99:592–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fischer AW, Hoefig CS, Abreu-Vieira G, de Jong JMA, Petrovic N, Mittag J, et al. Leptin raises defended body temperature without activating thermogenesis. Cell Rep. 2016;14:1621–31.

    Article  CAS  PubMed  Google Scholar 

  42. Kaiyala KJ, Ogimoto K, Nelson JT, Schwartz MW, Morton GJ. Leptin signaling is required for adaptive changes in food intake, but not energy expenditure, in response to different thermal conditions. PLoS One. 2015;10:e0119391.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Manzoni OJ, Manable T, Nicoll RA. Release of adenosine by activation of NMDA receptors in the hippocampus. Science. 1994;265:2098–101.

    Article  CAS  PubMed  Google Scholar 

  44. Cechova S, Venton BJ. Transient adenosine efflux in the rat caudate-putamen. J Neurochem 2008;105:1253–63.

    Article  CAS  PubMed  Google Scholar 

  45. Dunwiddie TV, Diao L, Proctor WR. Adenine nucleotides undergo rapid, quantitative conversion to adenosine in the extracellular space in rat hippocampus. J Neurosci. 1997;17:7673–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bal-Price A, Moneer Z, Brown GC. Nitric oxide induces rapid, calcium-dependent release of vesicular glutamate and ATP from cultured rat astrocytes. Glia. 2002;40:312–23.

    Article  PubMed  Google Scholar 

  47. Boison D, Chen JF, Fredholm BB. Adenosine signaling and function in glial cells. Cell Death Differ. 2010;17:1071–82.

    Article  CAS  PubMed  Google Scholar 

  48. Schimmel RJ, McCarthy L. Role of adenosine as an endogenous regulator of respiration in hamster brown adipocytes. Am J Physiol. 1984;246:C301–7.

    Article  CAS  PubMed  Google Scholar 

  49. Zimmermann H, Zebisch M, Strater N. Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal. 2012;8:437–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Pan W, Hsuchou H, Ye Y, Sakharhar A, Cain C, Yu C, et al. Astrocyte leptin receptor (ObR) and leptin transport in adult-onset obese mice. Endocrinology. 2008;149:2798–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hsuchou H, He Y, Kastin AJ, Tu H, Markadakis EN, Rogers RC, et al. Obesity induces functional astrocytic leptin receptors in hypothalamus. Brain. 2009;132:889–902.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122:153–62.

    Article  CAS  PubMed  Google Scholar 

  53. Kim DS, Palmiter RD. Adenosine receptor blockade reverses hypophagia and enhances locomotor activity of dopamine-deficient mice. Proc Natl Acad Sci USA. 2003;100:1346–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Hsuchou H, He Y, Kastin AJ, Pan W. Role of astrocytes in leptin signaling. J Mol Neurosci. 2015;56:829–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Dale N, Gourine AV, Llaudet E, Bulmer D, Thomas T, Spyer KM. Rapid adenosine release in the nucleus tractus solitarii during defense response in rats: real-time measurement in vivo. J Physiol. 2002;544:149–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wall MJ, Dale N. Neuronal transporter and astrocytic ATP exocytosis underlie activity-dependent release in the hippocampus. J Physiol 2013;591:3853–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lalo U, Palygin O, Rasooli-Nejad S, Andrew J, Haydon PG, Pankratov Y. Exocytosis of ATP from astrocytes modulates phasic and tonic inhibition in the neocortex. PLoS Biol. 2014;12:e1001747.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tian L, Yang Y, Wysocki LM, Arnold AC, Hu A, Ravichandran B, et al. Selective esterase-ester pair for targeting small molecules with cellular specificity. Proc Natl Acad Sci USA. 2012;109:4756–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yang L, Lee P, Sternson SM. Cell type-specific pharmacology of NMDA receptors using masked MK801. eLife. 2015;4:e10206.

    Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the NIH (R01 MH109441; R01 DK112759, to Y.Y.) and Einstein Research Foundation. We thank all the members of the Yang laboratory for discussion and critical comments on this study. We thank the Einstein Diabetes Center Animal Physiology Core for helping with indirect calorimetry studies, the Einstein Histology & Comparative Pathology Core for heling with adipose tissue histology studies, and the Einstein Diabetes Center Stable Isotope and Metabolomics Core for adipose tissue mitochondrial studies. We also thank Drs. Gary Schwartz, Streamson Chua, and Christoph Buettner for their reading and critical comments on the original version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. conceived and designed this study; J.Z., Y.H., D.C., and X.D. performed behavioral and metabolic studies as well as RT-qPCR assays; J.Z. and X.D. performed searhorse assays of tissue mitochondrial oxygen consumption, adipose histology, and ELISA assays; J.Z. and D.C. performed immunostaing and western blots; J.Z., X.D., and Z.G. performed indirect calorimetry studies. J.Z., D.C., G.S., and Y.H. performed mouse surgeries with cannula implantation; M.W. and Y.Y. wrote the manuscript with inputs from other authors; Q.Y., and J.L. edited the manuscript and provided experimental design suggestions.

Corresponding authors

Correspondence to Ma-Li Wong or Yunlei Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Hou, Y., Du, Xl. et al. ADORA1-driven brain-sympathetic neuro-adipose connections control body weight and adipose lipid metabolism. Mol Psychiatry 26, 2805–2819 (2021). https://doi.org/10.1038/s41380-020-00908-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-020-00908-y

This article is cited by

Search

Quick links