Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cortical hypometabolism in Parkinson’s disease is linked to cholinergic basal forebrain atrophy

Abstract

Cortical hypometabolism on FDG-PET is a well-established neuroimaging biomarker of cognitive impairment in Parkinson’s disease (PD), but its pathophysiologic origins are incompletely understood. Cholinergic basal forebrain (cBF) degeneration is a prominent pathological feature of PD-related cognitive impairment and may contribute to cortical hypometabolism through cholinergic denervation of cortical projection areas. Here, we investigated in-vivo associations between subregional cBF volumes on 3T-MRI, cortical hypometabolism on [18F]FDG-PET, and cognitive deficits in a cohort of 95 PD participants with varying degrees of cognitive impairment. We further assessed the spatial correspondence of the cortical pattern of cBF-associated hypometabolism with the pattern of cholinergic denervation in PD as assessed by [18F]FEOBV-PET imaging of presynaptic cholinergic terminal density in a second cohort. Lower volume of the cortically-projecting posterior cBF, but not of the anterior cBF, was significantly associated with extensive neocortical hypometabolism [p(FDR) < 0.05], which mediated the association between cBF atrophy and cognitive impairment (mediated proportion: 43%, p < 0.001). In combined models, posterior cBF atrophy explained more variance in cortical hypometabolism (R2 = 0.26, p < 0.001) than local atrophy in the cortical areas themselves (R2 = 0.16, p = 0.01). Topographic correspondence analysis with the [18F]FEOBV-PET pattern revealed that cortical areas showing most pronounced cBF-associated hypometabolism correspond to those showing most severe cholinergic denervation in PD (Spearman’s ρ = 0.57, p < 0.001). In conclusion, posterior cBF atrophy in PD is selectively associated with hypometabolism in denervated cortical target areas, which mediates the effect of cBF atrophy on cognitive impairment. These data provide first-time in-vivo evidence that cholinergic degeneration represents a principle pathological correlate of cortical hypometabolism underlying cognitive impairment in PD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Associations between posterior cBF atrophy and cortical hypometabolism in PD.
Fig. 2: Mediation analysis of associations between cBF atrophy, cortical hypometabolism, and cognitive impairment.
Fig. 3: Topographic correspondence between patterns of cBF-associated cortical hypometabolism and cholinergic denervation in PD.

Similar content being viewed by others

Data availability

The data generated and analysed in the current study are available from the corresponding authors upon reasonable and formal request approved by the relevant local ethics committees.

References

  1. Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Chaudhuri KR, et al. Parkinson disease-associated cognitive impairment. Nat Rev Dis Prim. 2021;7:47.

  2. Garcia-Garcia D, Clavero P, Gasca Salas C, Lamet I, Arbizu J, Gonzalez-Redondo R, et al. Posterior parietooccipital hypometabolism may differentiate mild cognitive impairment from dementia in Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2012;39:1767–77.

    Article  PubMed  Google Scholar 

  3. González-Redondo R, García-García D, Clavero P, Gasca-Salas C, García-Eulate R, Zubieta JL, et al. Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: a two-step process. Brain. 2014;137:2356–67.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rodriguez-Oroz MC, Gago B, Clavero P, Delgado-Alvarado M, Garcia-Garcia D, Jimenez-Urbieta H. The relationship between atrophy and hypometabolism: is it regionally dependent in dementias? Curr Neurol Neurosci Rep. 2015;15:44.

    Article  PubMed  Google Scholar 

  5. Nestor PJ. The Lewy body, the hallucination, the atrophy and the physiology. Oxford University Press; 2007.

  6. Borghammer P. Perfusion and metabolism imaging studies in Parkinson’s disease. Dan Med J. 2012;59:B4466.

    PubMed  Google Scholar 

  7. Bohnen NI, Yarnall AJ, Weil RS, Moro E, Moehle MS, Borghammer P, et al. Cholinergic system changes in Parkinson’s disease: emerging therapeutic approaches. Lancet Neurol. 2022;21:381–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ballinger EC, Ananth M, Talmage DA, Role LW. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron. 2016;91:1199–218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ovsepian SV, O’Leary VB, Zaborszky L. Cholinergic mechanisms in the cerebral cortex: beyond synaptic transmission. Neuroscientist. 2015;22:238–51.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Browne SE, Lin L, Mattsson A, Georgievska B, Isacson O. Selective antibody-induced cholinergic cell and synapse loss produce sustained hippocampal and cortical hypometabolism with correlated cognitive deficits. Exp Neurol. 2001;170:36–47.

    Article  CAS  PubMed  Google Scholar 

  11. Gelfo F, Petrosini L, Alessandro PG, Bartolo D, Burello L, Vitale E, et al. Cortical metabolic deficits in a rat model of cholinergic basal forebrain degeneration. Neurochem Res. 2013;38:2114–23.

    Article  CAS  PubMed  Google Scholar 

  12. Grothe MJ, Labrador-Espinosa MA, Jesús S, Macías-García D, Adarmes-Gómez A, Carrillo F, et al. In vivo cholinergic basal forebrain degeneration and cognition in Parkinson’s disease: Imaging results from the COPPADIS study. Parkinsonism Relat Disord. 2021;88:68–75.

    Article  CAS  PubMed  Google Scholar 

  13. Barrett MJ, Sperling SA, Blair JC, Freeman CS, Flanigan JL, Smolkin ME, et al. Lower volume, more impairment: reduced cholinergic basal forebrain grey matter density is associated with impaired cognition in Parkinson disease. J Neurol Neurosurg Psychiatry. 2019;90:1251–6.

    Article  PubMed  Google Scholar 

  14. Ray NJ, Bradburn S, Murgatroyd C, Toseeb U, Mir P, Kountouriotis GK, et al. In vivo cholinergic basal forebrain atrophy predicts cognitive decline in de novo Parkinson’s disease. Brain. 2018;141:165–76.

    Article  PubMed  Google Scholar 

  15. Schulz J, Pagano G, Bonfante JAF, Wilson H, Politis M. Nucleus basalis of Meynert degeneration precedes and predicts cognitive impairment in Parkinson’s disease. Brain. 2018;141:1501–16.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Pereira JB, Hall S, Jalakas M, Grothe MJ, Strandberg O, Stomrud E, et al. Longitudinal degeneration of the basal forebrain predicts subsequent dementia in Parkinson’s disease. Neurobiol Dis. 2020;139:104831.

    Article  CAS  PubMed  Google Scholar 

  17. Labrador-Espinosa MA, Silva-Rodríguez J, Reina-Castillo MI, Mir P, Grothe MJ. Basal forebrain atrophy, cortical thinning, and amyloid-β status in Parkinson’s disease-related cognitive decline. Mov Disord. 2023;38:1871–80.

  18. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30:1591–601.

    Article  PubMed  Google Scholar 

  19. Okkels N, Horsager J, Labrador-Espinosa M, Kjeldsen PL, Damholdt MF, Mortensen J, et al. Severe cholinergic terminal loss in newly diagnosed dementia with Lewy bodies. Brain. 2023;146:3690–704.

  20. Skorvanek M, Goldman JG, Jahanshahi M, Marras C, Rektorova I, Schmand B, et al. Global scales for cognitive screening in Parkinson’s disease: critique and recommendations. Mov Disord. 2018;33:208–18.

    Article  PubMed  Google Scholar 

  21. Pagonabarraga J, Kulisevsky J, Llebaria G, García-Sánchez C, Pascual-Sedano B, Gironell A. Parkinson’s disease-cognitive rating scale: a new cognitive scale specific for Parkinson’s disease. Mov Disord. 2008;23:998–1005.

    Article  PubMed  Google Scholar 

  22. Hall S, Janelidze S, Londos E, Leuzy A, Stomrud E, Dage JL, et al. Plasma phospho-tau identifies Alzheimer’s co-pathology in patients with lewy body disease. Mov Disord. 2021;36:767–71.

    Article  CAS  PubMed  Google Scholar 

  23. Ashton NJ, Brum WS, Di Molfetta G, Benedet AL, Arslan B, Jonaitis E, et al. Diagnostic accuracy of a plasma phosphorylated tau 217 immunoassay for Alzheimer disease pathology. JAMA Neurol. 2024;81:255–63.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Periñán MT, Macías-García D, Labrador-Espinosa M, Jesús S, Buiza-Rueda D, Adarmes-Gómez AD, et al. Association of PICALM with cognitive impairment in Parkinson’s disease. Mov Disord. 2021;36:118–23.

    Article  PubMed  Google Scholar 

  25. Mizutani R, Saiga R, Takekoshi S, Inomoto C, Nakamura N, Itokawa M, et al. A method for estimating spatial resolution of real image in the Fourier domain. J Microsc. 2015;261:57–66.

    Article  PubMed  Google Scholar 

  26. Felix C, Alex Z, Barry B. A data-driven approach for estimating the spatial resolution of brain PET images (4301). Neurology. 2020;94:4301.

    Article  Google Scholar 

  27. Ashburner J. A fast diffeomorphic image registration algorithm. NeuroImage. 2007;38:95–113.

    Article  PubMed  Google Scholar 

  28. Fritz H-CJ, Ray N, Dyrba M, Sorg C, Teipel S, Grothe MJ. The corticotopic organization of the human basal forebrain as revealed by regionally selective functional connectivity profiles. Hum Brain Mapp. 2019;40:868–78.

  29. Grothe MJ, Heinsen H, Amaro E, Grinberg LT, Teipel SJ. Cognitive correlates of basal forebrain atrophy and associated cortical hypometabolism in mild cognitive impairment. Cerebral Cortex. 2016;26:2411–26.

    Article  PubMed  Google Scholar 

  30. Silva-Rodríguez J, Labrador-Espinosa MA, Moscoso A, Schöll M, Mir P, Grothe MJ. Characteristics of amnestic patients with hypometabolism patterns suggestive of Lewy body pathology. Brain. 2023;146:4520–31.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gonzalez-Escamilla G, Lange C, Teipel S, Buchert R, Grothe MJ. PETPVE12: an SPM toolbox for partial volume effects correction in brain PET – application to amyloid imaging with AV45-PET. NeuroImage. 2017;147:669–77.

    Article  PubMed  Google Scholar 

  32. Okkels N, Horsager J, Labrador-Espinosa MA, Hansen FO, Andersen KB, Just K, et al. Distribution of cholinergic nerve terminals in the aged human brain measured with [18 F]FEOBV PET and its correlation with histological data. NeuroImage. 2023;269:119908.

    Article  CAS  PubMed  Google Scholar 

  33. Groemping U. Relative importance for linear regression in R: the package relaimpo. J Stat Softw. 2006;17:1–27.

    Google Scholar 

  34. Imai K, Keele L, Yamamoto T. Identification, inference and sensitivity analysis for causal mediation effects. Stat Sci. 2010;25:51–71.

    Article  Google Scholar 

  35. Schaefer A, Kong R, Gordon EM, Laumann TO, Zuo X-N, Holmes AJ, et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex. 2018;28:3095–114.

    Article  PubMed  Google Scholar 

  36. Bohnen NI, Koeppe RA, Minoshima S, Giordani B, Albin RL, Frey KA, et al. Cerebral glucose metabolic features of Parkinson disease and incident dementia: longitudinal study. J Nucl Med. 2011;52:848–55.

    Article  CAS  PubMed  Google Scholar 

  37. Mesulam MM. The cholinergic innervation of the human cerebral cortex. Prog Brain Res. 2004;145:67–78.

    Article  PubMed  Google Scholar 

  38. Jellinger K. Quantitative changes in some subcortical nuclei in aging, Alzheimer’s disease and Parkinson’s disease. Neurobiol Aging. 1987;8:556–61.

    Article  CAS  PubMed  Google Scholar 

  39. Liu AKL, Chang RC-C, Pearce RKB, Gentleman SM. Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer’s and Parkinson’s disease. Acta Neuropathol. 2015;129:527–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Schumacher J, Kanel P, Dyrba M, Storch A, Teipel S, Grothe MJ. Structural and molecular cholinergic imaging markers of cognitive decline in Parkinson's disease. Brain. 2023;146:4964–73.

  41. Ray NJ, Kanel P, Bohnen NI. Atrophy of the cholinergic basal forebrain can detect presynaptic cholinergic loss in Parkinson’s disease. Ann Neurol. 2023;93:991–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Crowley SJ, Kanel P, Roytman S, Bohnen NI, Hampstead BM. Basal forebrain integrity, cholinergic innervation and cognition in idiopathic Parkinson’s disease. Brain. 2024;147:1799–1808.

  43. Khundakar AA, Hanson PS, Erskine D, Lax NZ, Roscamp J, Karyka E, et al. Analysis of primary visual cortex in dementia with Lewy bodies indicates GABAergic involvement associated with recurrent complex visual hallucinations. Acta Neuropathol Commun. 2016;4:66.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Patterson L, Firbank MJ, Colloby SJ, Attems J, Thomas AJ, Morris CM. Neuropathological changes in dementia with lewy bodies and the Cingulate Island sign. J Neuropathol Exp Neurol. 2019;78:717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Higuchi M, Tashiro M, Arai H, Okamura N, Hara S, Higuchi S, et al. Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies. Exp Neurol. 2000;162:247–56.

    Article  CAS  PubMed  Google Scholar 

  46. Andersen KB, Hansen AK, Schacht AC, Horsager J, Gottrup H, Klit H, et al. Synaptic density and glucose consumption in patients with Lewy Body Diseases: an [(11) C]UCB-J and [(18) F]FDG PET study. Mov Disord. 2023;38:796–805.

    Article  CAS  PubMed  Google Scholar 

  47. Albrecht F, Ballarini T, Neumann J, Schroeter ML. FDG-PET hypometabolism is more sensitive than MRI atrophy in Parkinson’s disease: a whole-brain multimodal imaging meta-analysis. NeuroImage Clin. 2019;21:101594.

    Article  PubMed  Google Scholar 

  48. Lanskey JH, McColgan P, Schrag AE, Acosta-Cabronero J, Rees G, Morris HR, et al. Can neuroimaging predict dementia in Parkinson’s disease? Brain. 2018;141:2545–60.

    PubMed  PubMed Central  Google Scholar 

  49. Svenningsson P, Westman E, Ballard C, Aarsland D. Cognitive impairment in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment. Lancet Neurol. 2012;11:697–707.

    Article  PubMed  Google Scholar 

  50. Bohnen NI, Muller MLTM, Kotagal V, Koeppe RA, Kilbourn MA, Albin RL, et al. Olfactory dysfunction, central cholinergic integrity and cognitive impairment in Parkinson’s disease. Brain. 2010;133:1747–54.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Van Der Zee S, Müller MLTM, Kanel P, Van Laar T, Bohnen NI. Cholinergic denervation patterns across cognitive domains in Parkinson’s disease. Mov Disord. 2021;36:642–50.

    Article  PubMed  Google Scholar 

  52. Mori T, Ikeda M, Fukuhara R, Nestor PJ, Tanabe H. Correlation of visual hallucinations with occipital rCBF changes by donepezil in DLB. Neurology. 2006;66:935–7.

    Article  CAS  PubMed  Google Scholar 

  53. Suantio AM, Huang HL, Kwok CSN, Teo DCH, Nguyen MH. FDG-PET in suspected dementia with Lewy bodies: a case report. BMC Geriatr. 2019;19:150.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Satoh M, Ishikawa H, Meguro K, Kasuya M, Ishii H, Yamaguchi S. Improved visual hallucination by donepezil and occipital glucose metabolism in dementia with lewy bodies: the Osaki-Tajiri project. Eur Neurol. 2010;64:337–44.

    Article  CAS  PubMed  Google Scholar 

  55. Baik K, Kim SM, Jung JH, Lee YH, Chung SJ, Yoo HS, et al. Donepezil for mild cognitive impairment in Parkinson’s disease. Sci Rep. 2021;11:4734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bohnen NI, Müller MLTM, Kotagal V, Koeppe RA, Kilbourn MR, Gilman S, et al. Heterogeneity of cholinergic denervation in Parkinson’s disease without dementia. J Cereb Blood Flow Metab. 2012;32:1609–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hirano S, Shinotoh H, Shimada H, Ota T, Sato K, Tanaka N, et al. Voxel-based acetylcholinesterase PET study in early and late onset Alzheimer’s disease. J Alzheimers Dis. 2018;62:1539–48.

    Article  CAS  PubMed  Google Scholar 

  58. Richter N, Nellessen N, Dronse J, Dillen K, Jacobs HIL, Langen KJ, et al. Spatial distributions of cholinergic impairment and neuronal hypometabolism differ in MCI due to AD. NeuroImage Clin. 2019;24:101978.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Grothe MJ, Teipel SJ. Spatial patterns of atrophy, hypometabolism, and amyloid deposition in Alzheimer’s disease correspond to dissociable functional brain networks. Hum Brain Mapp. 2016;37:35–53.

    Article  PubMed  Google Scholar 

  60. Mielke MM, Dage JL, Frank RD, Algeciras-Schimnich A, Knopman DS, Lowe VJ, et al. Performance of plasma phosphorylated tau 181 and 217 in the community. Nat Med. 2022;28:1398–405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gharbi-Meliani A, Dugravot A, Sabia S, Regy M, Fayosse A, Schnitzler A, et al. The association of APOE ε4 with cognitive function over the adult life course and incidence of dementia: 20years follow-up of the Whitehall II study. Alzheimers Res Ther. 2021;13:5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Jansen WJ, Janssen O, Tijms BM, Vos SJB, Ossenkoppele R, Visser PJ, et al. Prevalence estimates of amyloid abnormality across the Alzheimer disease clinical spectrum. JAMA Neurol. 2022;79:228–43.

    Article  PubMed  Google Scholar 

  63. Coughlin DG, Hurtig HI, Irwin DJ. Pathological Influences on clinical heterogeneity in Lewy body diseases. Mov Disord. 2020;35:5–19.

    Article  PubMed  Google Scholar 

  64. Peter J, Mayer I, Kammer T, Minkova L, Lahr J, Klöppel S, et al. The relationship between cholinergic system brain structure and function in healthy adults and patients with mild cognitive impairment. Sci Rep. 2021;11:1–7.

    Article  Google Scholar 

  65. Frey KA, Bohnen NILJ. Molecular imaging of neurodegenerative Parkinsonism. PET Clin. 2021;16:261–72.

    Article  PubMed  Google Scholar 

  66. Apostolova I, Lange C, Frings L, Klutmann S, Meyer PT, Buchert R. Nigrostriatal degeneration in the cognitive part of the striatum in Parkinson disease is associated with frontomedial hypometabolism. Clin Nuclear Med. 2020;45:95–99.

    Article  Google Scholar 

  67. Orso B, Arnaldi D, Girtler N, Brugnolo A, Doglione E, Mattioli P, et al. Dopaminergic and serotonergic degeneration and cortical [18F]fluorodeoxyglucose positron emission tomography in De Novo Parkinson’s disease. Mov Disord. 2021;36:2293–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the participants in this study for their contribution to science and the Instituto de Biomedicina de Sevilla and the Hospital Universitario Virgen del Rocío for the research resources provided.

Funding

This work was supported by the Spanish Ministry of Science and Innovation (RTC2019-007150-1, PID2021-127034OA-I00), the Instituto de Salud Carlos III-Fondo Europeo de Desarrollo Regional (ISCIII-FEDER) (PI16/01575, PI18/01898, PI19/01576, PI20/00613, PI21/01875, PI22/01704), the Consejería de Economía, Innovación, Ciencia y Empleo de la Junta de Andalucía (CVI-02526, CTS-7685), the Consejería de Salud y Bienestar Social de la Junta de Andalucía (PI-0471-2013, PE-0210-2018, PI-0459-2018, PE-0186-2019), the Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía (PY20_00896, P20_00903), and the Fundación Alicia Koplowitz. Several authors of this publication are members of the European Reference Network for Rare Neurological Diseases (project ID 739510). M.A.L.E. is supported by a PhD scholarship (VI-PPIT-US) from the University of Seville (USE-19094-G). J.S.R. is supported by the “Sara Borrell” program (CD21/00067) of the ISCIII-FEDER. M.J.G. is supported by the “Miguel Servet” program (CP19/00031) of the ISCIII-FEDER. N.O. is supported by the Danish Parkinson’s Disease Association and the Health Research Foundation of Central Denmark Region. L.M.D. is supported by the “Río Hortega” program (CM21/00051) of the ISCIII-FEDER. D.M.G. is supported by the “Juan Rodés” program (JR22/00073) of the ISCIII-FEDER.

Author information

Authors and Affiliations

Authors

Contributions

MJG and PM contributed to the study conceptualization and design. NO, LMD, JH, AMCG, EIC, MSE, DMG, SJ, AAG, EOL, FC, FRL, DGS, and PB contributed to the data collection and material preparation. MALE, JSR, NO, SCL, PFR, and JFMR were involved in pre-processing and preparing the data for the analysis. The analyses were performed by MALE and JSR. The first draft of the manuscript was written by MALE and JSR. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Pablo Mir or Michel J. Grothe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of the University Hospital ‘Virgen del Rocío’ (approval number: 2158-N-20).

Consent for publication

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Labrador-Espinosa, M.A., Silva-Rodriguez, J., Okkels, N. et al. Cortical hypometabolism in Parkinson’s disease is linked to cholinergic basal forebrain atrophy. Mol Psychiatry 30, 2372–2380 (2025). https://doi.org/10.1038/s41380-024-02842-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-024-02842-9

Search

Quick links