Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dual recombinase-mediated intersectional genetics defines the functional heterogeneity of neural stem cells in adult hippocampus

Abstract

The Cre-lox site-specific recombinase system is one of the most powerful and versatile technology platforms for studying neural stem cells (NSCs) in adult brain, which is now challenged due to the complex and dynamic nature of in vivo gene expression. In this study, we develop an inducible dual recombinase-mediated intersectional genetics by combining Dre-rox and Cre-lox recombination technologies to specifically target two subpopulations of NSCs (α- and β-NSCs). By visiting their cell lineage and functionality, we find that α- and β-NSCs display distinct self-renewal and differentiation potential, as well as differential responses to external stimuli. Notably, in contrast to α-NSCs, the number of β-NSCs is not affected in aged mice and an APP/PS1 mouse model of Alzeimer’s disease. Single cell transcriptome analysis reveals divergent molecular signatures between type α- and β-NSCs and identifies PRMT1 as an important regulatory element to differentially regulate the neurogenic potential of α- and β-NSCs. Inhibition of PRMT1 specifically enhances the neurogenic capacity of β-NSCs and promotes the cognition functions in aged mice. Importantly, PRMT1 inhibition combined with increased BDNF levels pharmacologically ameliorates the cognitive impairments in APP/PS1 mice. Together, our study suggests that understanding the functional heterogeneity of NSCs might pave the way for harnessing the specific subpopulation of NSCs to treat brain disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: α- and β-rNSCs differently contribute to adult hippocampal neurogenesis.
Fig. 2: α- and β-rNSCs behave differently with age.
Fig. 3: Transcriptome analysis identify Prmt1 as an important regulatory element to specifically regulate the neurogenic potential of β-NSCs.
Fig. 4: PRMT1 plays distinct functions in α- and β-rNSCs.
Fig. 5: Pharmacological inhibition of PRMT1 restores age-related cognitive decline.
Fig. 6: PRMT1 inhibition combined with increased BDNF levels pharmacologically ameliorates cognitive functions in APP/PS1 mice.

Similar content being viewed by others

Data availability

All data generated in this study are included in this published article and its supplementary information files, which are available from the corresponding author on reasonable request. The raw scRNA-seq data in this study have been submitted to the Genome Sequence Archive in Beijing Institute of Genomics (BIG) Data Center (https://bigd.big.ac.cn/gsa) under accession number CRA012491.

References

  1. Bond AM, Ming GL, Song H. Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell. 2015;17:385–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li Y, Guo W. Neural stem cell niche and adult neurogenesis. Neuroscientist. 2021;27:235–45.

    Article  CAS  PubMed  Google Scholar 

  3. Toda T, Parylak SL, Linker SB, Gage FH. The role of adult hippocampal neurogenesis in brain health and disease. Mol Psychiatry. 2019;24:67–87.

    Article  CAS  PubMed  Google Scholar 

  4. Mu Y, Gage FH. Adult hippocampal neurogenesis and its role in Alzheimer’s disease. Mol Neurodegener. 2011;6:85.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Babcock KR, Page JS, Fallon JR, Webb AE. Adult hippocampal neurogenesis in aging and Alzheimer’s disease. Stem Cell Reports. 2021;16:681–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Moss J, Gebara E, Bushong EA, Sanchez-Pascual I, O’Laoi R, El M’Ghari I, et al. Fine processes of Nestin-GFP-positive radial glia-like stem cells in the adult dentate gyrus ensheathe local synapses and vasculature. Proc Natl Acad Sci USA. 2016;113:E2536–2545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. DeCarolis NA, Mechanic M, Petrik D, Carlton A, Ables JL, Malhotra S, et al. In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus. 2013;23:708–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Luo X, Dai M, Wang M, Wang X, Guo W. Functional heterogeneity of Wnt-responsive and Hedgehog-responsive neural stem cells in the murine adult hippocampus. Dev Cell. 2023;58:2545–2562.e6.

    Article  CAS  PubMed  Google Scholar 

  9. Martin-Suarez S, Valero J, Muro-Garcia T, Encinas JM. Phenotypical and functional heterogeneity of neural stem cells in the aged hippocampus. Aging Cell. 2019;18:e12958.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Obernier K, Alvarez-Buylla A. Neural stem cells: origin, heterogeneity and regulation in the adult mammalian brain. Development. 2019;146:dev156059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Otsuki L, Brand AH. Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. Science. 2018;360:99–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gebara E, Bonaguidi MA, Beckervordersandforth R, Sultan S, Udry F, Gijs PJ, et al. Heterogeneity of Radial Glia-Like Cells in the Adult Hippocampus. Stem Cells. 2016;34:997–1010.

    Article  CAS  PubMed  Google Scholar 

  13. Han X, Zhang Z, He L, Zhu H, Li Y, Pu W, et al. A suite of new Dre recombinase drivers markedly expands the ability to perform intersectional genetic targeting. Cell Stem Cell. 2021;28:1160–1176.e1167.

    Article  CAS  PubMed  Google Scholar 

  14. Madisen L, Garner AR, Shimaoka D, Chuong AS, Klapoetke NC, Li L, et al. Transgenic mice for intersectional targeting of neural sensors and effectors with high specificity and performance. Neuron. 2015;85:942–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Opendak M, Gould E. Adult neurogenesis: a substrate for experience-dependent change. Trends Cogn Sci. 2015;19:151–61.

    Article  PubMed  Google Scholar 

  16. Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS. Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spatial memory. J Neurobiol. 1999;39:569–78.

    Article  CAS  PubMed  Google Scholar 

  17. Mich JK, Signer RA, Nakada D, Pineda A, Burgess RJ, Vue TY, et al. Prospective identification of functionally distinct stem cells and neurosphere-initiating cells in adult mouse forebrain. Elife. 2014;3:e02669.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Santello M, Toni N, Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nat Neurosci. 2019;22:154–66.

    Article  CAS  PubMed  Google Scholar 

  19. Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. Generalizing RNA velocity to transient cell states through dynamical modeling. Nat Biotechnol. 2020;38:1408–14.

    Article  CAS  PubMed  Google Scholar 

  20. Ibrayeva A, Bay M, Pu E, Jorg DJ, Peng L, Jun H, et al. Early stem cell aging in the mature brain. Cell Stem Cell. 2021;28:955–966.e957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen L, Zhang M, Fang L, Yang X, Cao N, Xu L, et al. Coordinated regulation of the ribosome and proteasome by PRMT1 in the maintenance of neural stemness in cancer cells and neural stem cells. J Biol Chem. 2021;297:101275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mudo G, Bonomo A, Di Liberto V, Frinchi M, Fuxe K, Belluardo N. The FGF-2/FGFRs neurotrophic system promotes neurogenesis in the adult brain. J Neural Transm (Vienna). 2009;116:995–1005.

    Article  CAS  PubMed  Google Scholar 

  23. Romano R, Bucci C. Role of EGFR in the nervous system. Cells. 2020;9:1887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schaffner I, Minakaki G, Khan MA, Balta EA, Schlotzer-Schrehardt U, Schwarz TJ, et al. FoxO function is essential for maintenance of autophagic flux and neuronal morphogenesis in adult neurogenesis. Neuron. 2018;99:1188–1203.e1186.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang R, Boareto M, Engler A, Louvi A, Giachino C, Iber D, et al. Id4 downstream of Notch2 maintains neural stem cell quiescence in the adult hippocampus. Cell Rep. 2019;28:1485–1498.e1486.

    Article  PubMed  Google Scholar 

  26. Braun K, Haberle BM, Wittmann MT, Lie DC. Enriched environment ameliorates adult hippocampal neurogenesis deficits in Tcf4 haploinsufficient mice. BMC Neurosci. 2020;21:50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hashimoto M, Fukamizu A, Nakagawa T, Kizuka Y. Roles of protein arginine methyltransferase 1 (PRMT1) in brain development and disease. Biochim Biophys Acta Gen Subj. 2021;1865:129776.

    Article  CAS  PubMed  Google Scholar 

  28. Heinke R, Spannhoff A, Meier R, Trojer P, Bauer I, Jung M, et al. Virtual screening and biological characterization of novel histone arginine methyltransferase PRMT1 inhibitors. ChemMedChem. 2009;4:69–77.

    Article  CAS  PubMed  Google Scholar 

  29. Seri B, Garcia-Verdugo JM, McEwen BS, Alvarez-Buylla A. Astrocytes give rise to new neurons in the adult mammalian hippocampus. J Neurosci. 2001;21:7153–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, et al. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer’s mouse model. Science. 2018;361:eaan8821.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Crews L, Adame A, Patrick C, Delaney A, Pham E, Rockenstein E, et al. Increased BMP6 levels in the brains of Alzheimer’s disease patients and APP transgenic mice are accompanied by impaired neurogenesis. J Neurosci. 2010;30:12252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gomez-Nicola D, Suzzi S, Vargas-Caballero M, Fransen NL, Al-Malki H, Cebrian-Silla A, et al. Temporal dynamics of hippocampal neurogenesis in chronic neurodegeneration. Brain. 2014;137:2312–28.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Li B, Yamamori H, Tatebayashi Y, Shafit-Zagardo B, Tanimukai H, Chen S, et al. Failure of neuronal maturation in Alzheimer disease dentate gyrus. J Neuropathol Exp Neurol. 2008;67:78–84.

    Article  CAS  PubMed  Google Scholar 

  34. Lovell MA, Geiger H, Van Zant GE, Lynn BC, Markesbery WR. Isolation of neural precursor cells from Alzheimer’s disease and aged control postmortem brain. Neurobiol Aging. 2006;27:909–17.

    Article  PubMed  Google Scholar 

  35. Perry EK, Johnson M, Ekonomou A, Perry RH, Ballard C, Attems J. Neurogenic abnormalities in Alzheimer’s disease differ between stages of neurogenesis and are partly related to cholinergic pathology. Neurobiol Dis. 2012;47:155–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tobin MK, Musaraca K, Disouky A, Shetti A, Bheri A, Honer WG, et al. Human hippocampal neurogenesis persists in aged adults and Alzheimer’s disease patients. Cell Stem Cell. 2019;24:974–982.e973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Guerrieri D, van Praag H. Exercise-mimetic AICAR transiently benefits brain function. Oncotarget. 2015;6:18293–313.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ganat YM, Silbereis J, Cave C, Ngu H, Anderson GM, Ohkubo Y, et al. Early postnatal astroglial cells produce multilineage precursors and neural stem cells in vivo. J Neurosci. 2006;26:8609–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Burns KA, Ayoub AE, Breunig JJ, Adhami F, Weng WL, Colbert MC, et al. Nestin-CreER mice reveal DNA synthesis by nonapoptotic neurons following cerebral ischemia hypoxia. Cereb Cortex. 2007;17:2585–92.

    Article  PubMed  Google Scholar 

  40. Furube E, Ishii H, Nambu Y, Kurganov E, Nagaoka S, Morita M, et al. Neural stem cell phenotype of tanycyte-like ependymal cells in the circumventricular organs and central canal of adult mouse brain. Sci Rep. 2020;10:2826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lagace DC, Whitman MC, Noonan MA, Ables JL, DeCarolis NA, Arguello AA, et al. Dynamic contribution of nestin-expressing stem cells to adult neurogenesis. J Neurosci. 2007;27:12623–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hirrlinger J, Scheller A, Hirrlinger PG, Kellert B, Tang W, Wehr MC, et al. Split-cre complementation indicates coincident activity of different genes in vivo. PLoS One. 2009;4:e4286.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kolodziejczyk AA, Kim JK, Svensson V, Marioni JC, Teichmann SA. The technology and biology of single-cell RNA sequencing. Mol Cell. 2015;58:610–20.

    Article  CAS  PubMed  Google Scholar 

  44. Dulken BW, Leeman DS, Boutet SC, Hebestreit K, Brunet A. Single-cell transcriptomic analysis defines heterogeneity and transcriptional dynamics in the adult neural stem cell lineage. Cell Rep. 2017;18:777–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Hao ZZ, Wei JR, Xiao D, Liu R, Xu N, Tang L, et al. Single-cell transcriptomics of adult macaque hippocampus reveals neural precursor cell populations. Nat Neurosci. 2022;25:805–17.

    Article  CAS  PubMed  Google Scholar 

  46. Hochgerner H, Zeisel A, Lonnerberg P, Linnarsson S. Conserved properties of dentate gyrus neurogenesis across postnatal development revealed by single-cell RNA sequencing. Nat Neurosci. 2018;21:290–9.

    Article  CAS  PubMed  Google Scholar 

  47. Llorens-Bobadilla E, Zhao S, Baser A, Saiz-Castro G, Zwadlo K, Martin-Villalba A. Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell. 2015;17:329–40.

    Article  CAS  PubMed  Google Scholar 

  48. Mizrak D, Levitin HM, Delgado AC, Crotet V, Yuan J, Chaker Z, et al. Single-cell analysis of regional differences in adult V-SVZ neural stem cell lineages. Cell Rep. 2019;26:394–406 e395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shin J, Berg DA, Zhu Y, Shin JY, Song J, Bonaguidi MA, et al. Single-cell RNA-Seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell. 2015;17:360–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wang W, Wang M, Yang M, Zeng B, Qiu W, Ma Q, et al. Transcriptome dynamics of hippocampal neurogenesis in macaques across the lifespan and aged humans. Cell Res. 2022;32:729–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Lahnemann D, Koster J, Szczurek E, McCarthy DJ, Hicks SC, Robinson MD, et al. Eleven grand challenges in single-cell data science. Genome Biol. 2020;21:31.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Thomsen R, Pallesen J, Daugaard TF, Borglum AD, Nielsen AL. Genome wide assessment of mRNA in astrocyte protrusions by direct RNA sequencing reveals mRNA localization for the intermediate filament protein nestin. Glia. 2013;61:1922–37.

    Article  PubMed  Google Scholar 

  53. Almazan G, Vela JM, Molina-Holgado E, Guaza C. Re-evaluation of nestin as a marker of oligodendrocyte lineage cells. Microsc Res Tech. 2001;52:753–65.

    Article  CAS  PubMed  Google Scholar 

  54. Takamori Y, Mori T, Wakabayashi T, Nagasaka Y, Matsuzaki T, Yamada H. Nestin-positive microglia in adult rat cerebral cortex. Brain Res. 2009;1270:10–18.

    Article  CAS  PubMed  Google Scholar 

  55. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, et al. Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature. 2010;466:829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jurkowski MP, Bettio L, K Woo E, Patten A, Yau SY, Gil-Mohapel J. Beyond the hippocampus and the SVZ: adult neurogenesis throughout the brain. Front Cell Neurosci. 2020;14:576444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gubert C, Hannan AJ. Exercise mimetics: harnessing the therapeutic effects of physical activity. Nat Rev Drug Discov. 2021;20:862–79.

    Article  CAS  PubMed  Google Scholar 

  58. He L, Li Y, Li Y, Pu W, Huang X, Tian X, et al. Enhancing the precision of genetic lineage tracing using dual recombinases. Nat Med. 2017;23:1488–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Tang C, Wang M, Wang P, Wang L, Wu Q, Guo W. Neural stem cells behave as a functional niche for the maturation of newborn neurons through the secretion of PTN. Neuron. 2019;101:32–44.e36.

    Article  CAS  PubMed  Google Scholar 

  60. Wang J, Cui Y, Yu Z, Wang W, Cheng X, Ji W, et al. Brain endothelial cells maintain lactate homeostasis and control adult hippocampal neurogenesis. Cell Stem Cell. 2019;25:754–767.e759.

    Article  CAS  PubMed  Google Scholar 

  61. Wang M, Tang C, Xing R, Liu X, Han X, Liu Y, et al. WDR81 regulates adult hippocampal neurogenesis through endosomal SARA-TGFbeta signaling. Mol Psychiatry. 2021;26:694–709.

    Article  PubMed  Google Scholar 

  62. Xu M, Guo Y, Wang M, Luo X, Shen X, Li Z, et al. L-arginine homeostasis governs adult neural stem cell activation by modulating energy metabolism in vivo. EMBO J. 2023;42:e112647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tang C, Guo W. Implantation of a mini-osmotic pump plus stereotactical injection of retrovirus to study newborn neuron development in adult mouse hippocampus. STAR Protoc. 2021;2:100374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was supported by grants from STI2030-Major Projects (2021ZD0202302 to WG), the National Science Foundation of China (32394030 and 82271202 to WG).

Author information

Authors and Affiliations

Contributions

Ziqi Liang, Jinting He and Weixiang Guo conceived experiments; Ziqi Liang performed the analysis, created figures and drafted the manuscript. Zhimin Li, Jinting He, Jin Feng and Min Wang provided animals for the experiment, as well as interpretation of biological results. Xing Luo, Qiang Liu and Dezhe Qin performed the behavioral tests, as well as interpretation of biological results. Dan Zhang and Zhiheng Xu performed the single cell-RNA-seq analysis. Weixiang Guo wrote the manuscript. All authors read, revised, and approved the manuscript.

Corresponding authors

Correspondence to Jinting He or Weixiang Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study did not involve any human subjects. All animal care and related experimental procedures were conducted following the highest ethical standards and were approved by the IGDB Institutional Animal Care and Use Committee. All animals were bred and raised by the Transgenic Mouse Facility at IGDB under a regular light/dark (12 h/12 h) cycle with ad libitum access to food and water.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Li, Z., Zhang, D. et al. Dual recombinase-mediated intersectional genetics defines the functional heterogeneity of neural stem cells in adult hippocampus. Mol Psychiatry 30, 3516–3532 (2025). https://doi.org/10.1038/s41380-025-02937-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-02937-x

Search

Quick links