Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bidirectional causal associations between plasma metabolites and bipolar disorder

Abstract

Altered levels of human plasma metabolites have been implicated in the etiology of bipolar disorder (BD). However, the causality between metabolites and the disease was not well described. We performed a bidirectional metabolome-wide Mendelian randomization (MR) analysis to evaluate the potential causal relationships between 871 plasma metabolites and BD. We used DrugBank and ChEMBL to evaluate whether related metabolites are potential therapeutic targets. Finally, Bayesian colocalization analysis was performed to identify shared genomic loci BD and identified metabolites. Our MR results showed that six metabolites were significantly associated with a reduced risk of BD, including arachidonate (20:4n6) (OR: 0.90, 95% CI: 0.84–0.95) and sphingomyelin (d18:2/24:1, d18:1/24:2) (OR: 0.92, 95% CI: 0.87–0.96), while five metabolites were significantly associated with an increased risk of BD, including 1-palmitoyl-2-linoleoyl-GPE (16:0/18:2) (OR: 1.09, 95% CI: 1.05–1.13). However, our reverse MR analysis showed that BD was not associated with the levels of any metabolite. Additionally, the leave-one-out analysis revealed SNPs within chromosome 11 loci harboring MYRF, FADS1, and FADS2 as ones with the potential to influence partial causal effects. Druggability evaluation showed that 10 of the BD-related metabolites, such as sphingomyelin and cytidine, have been targeted by pharmacologic intervention. Colocalization analysis highlighted one colocalized region (chromosome 11q12) shared by 11 metabolites and BD and pointed to some genes as possible players, including FADS1, FADS2, FADS3, and SYT7. Our study supported a causal role of plasma metabolites in the susceptibility to BD, and the identified metabolites may provide a new avenue for the prevention and treatment of BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Flowchart of the study.
Fig. 2: Forest plot of causal effects of plasma metabolites on BD (FDR < 0.05).
Fig. 3: Forest plot of causal effects of BD on plasma metabolites (P < 0.05).
Fig. 4: Druggability of plasma metabolites with a causal effect on BD.
Fig. 5: One colocalized region between metabolites and BD.

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Vieta E, Berk M, Schulze TG, Carvalho AF, Suppes T, Calabrese JR, et al. Bipolar disorders. Nat Rev Dis Primers. 2018;4:18008.

    Article  PubMed  Google Scholar 

  2. Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry. 2011;68:241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Plans L, Barrot C, Nieto E, Rios J, Schulze TG, Papiol S, et al. Association between completed suicide and bipolar disorder: A systematic review of the literature. J Affect Disord. 2019;242:111–22.

    Article  PubMed  CAS  Google Scholar 

  4. Vigo D, Thornicroft G, Atun R. Estimating the true global burden of mental illness. Lancet Psychiatry. 2016;3:171–8.

    Article  PubMed  Google Scholar 

  5. Smoller JW, Finn CT. Family, twin, and adoption studies of bipolar disorder. Am J Med Genet Part C, Semin Med Genet. 2003;123c:48–58.

    Article  PubMed  Google Scholar 

  6. Baker SA, Rutter J. Metabolites as signalling molecules. Nat Rev Mol Cell Biol. 2023;24:355–74.

    Article  PubMed  CAS  Google Scholar 

  7. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. Nat Genet. 2014;46:543–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Chen Y, Lu T, Pettersson-Kymmer U, Stewart ID, Butler-Laporte G, Nakanishi T, et al. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases. Nat Genet. 2023;55:44–53.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wishart DS. Metabolomics for investigating physiological and pathophysiological processes. Physiol Rev. 2019;99:1819–75.

    Article  PubMed  CAS  Google Scholar 

  10. Bartel J, Krumsiek J, Schramm K, Adamski J, Gieger C, Herder C, et al. The human blood metabolome-transcriptome interface. PLoS Genet. 2015;11:e1005274.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Bartoli F, Cioni RM, Cavaleri D, Callovini T, Crocamo C, Misiak B, et al. The association of kynurenine pathway metabolites with symptom severity and clinical features of bipolar disorder: an overview. Eur Psychiatry. 2022;65:e82.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ribeiro HC, Sen P, Dickens A, Santa Cruz EC, Orešič M, Sussulini A. Metabolomic and proteomic profiling in bipolar disorder patients revealed potential molecular signatures related to hemostasis. Metabolomics. 2022;18:65.

    Article  PubMed  CAS  Google Scholar 

  13. Lan MJ, McLoughlin GA, Griffin JL, Tsang TM, Huang JT, Yuan P, et al. Metabonomic analysis identifies molecular changes associated with the pathophysiology and drug treatment of bipolar disorder. Mol Psychiatry. 2009;14:269–79.

    Article  PubMed  CAS  Google Scholar 

  14. Kageyama Y, Kasahara T, Morishita H, Mataga N, Deguchi Y, Tani M, et al. Search for plasma biomarkers in drug-free patients with bipolar disorder and schizophrenia using metabolome analysis. Psychiatry Clin Neurosci. 2017;71:115–23.

    Article  PubMed  CAS  Google Scholar 

  15. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63.

    Article  PubMed  Google Scholar 

  16. Chen F, Cao H, Baranova A, Zhao Q, Zhang F. Causal associations between COVID-19 and childhood mental disorders. BMC Psychiatry. 2023;23:922.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Baranova A, Chandhoke V, Cao H, Zhang F. Shared genetics and bidirectional causal relationships between type 2 diabetes and attention-deficit/hyperactivity disorder. Gen Psychiatry. 2023;36:e100996.

    Article  CAS  Google Scholar 

  18. Baranova A, Zhao Q, Cao H, Chandhoke V, Zhang F. Causal influences of neuropsychiatric disorders on Alzheimer’s disease. Transl Psychiatry. 2024;14:114.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang L, Yang F, Ma J, Hu Y, Li M, Wang C, et al. The impact of testosterone on Alzheimer’s disease are mediated by lipid metabolism and obesity: a mendelian randomization study. J Prev Alzheimer’s Dis. 2024;11:507–13.

    Article  CAS  Google Scholar 

  20. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. Elife. 2018;7:e34408.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 2014;10:e1004383.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Mullins N, Forstner AJ, O’Connell KS, Coombes B, Coleman JRI, Qiao Z, et al. Genome-wide association study of more than 40,000 bipolar disorder cases provides new insights into the underlying biology. Nat Genet. 2021;53:817–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Emdin CA, Khera AV, Kathiresan S. Mendelian Randomization. JAMA. 2017;318:1925–6.

    Article  PubMed  Google Scholar 

  24. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with invalid instruments: effect estimation and bias detection through Egger regression. Int J Epidemiol. 2015;44:512–25.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Bowden J, Del Greco MF, Minelli C, Zhao Q, Lawlor DA, Sheehan NA, et al. Improving the accuracy of two-sample summary-data Mendelian randomization: moving beyond the NOME assumption. Int J Epidemiol. 2019;48:728–42.

    Article  PubMed  Google Scholar 

  26. Burgess S, Thompson SG. Avoiding bias from weak instruments in Mendelian randomization studies. Int J Epidemiol. 2011;40:755–64.

    Article  PubMed  Google Scholar 

  27. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46:D1074–d82.

    Article  PubMed  CAS  Google Scholar 

  28. Mendez D, Gaulton A, Bento AP, Chambers J, De Veij M, Félix E, et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 2019;47:D930–d40.

    Article  PubMed  CAS  Google Scholar 

  29. Wallace C. Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses. PLoS Genet. 2020;16:e1008720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Wei J, Zhao L, Du Y, Tian Y, Ni P, Ni R, et al. A plasma metabolomics study suggests alteration of multiple metabolic pathways in patients with bipolar disorder. Psychiatry Res. 2021;299:113880.

    Article  PubMed  CAS  Google Scholar 

  31. Kasahara T, Takata A, Kato TM, Kubota-Sakashita M, Sawada T, Kakita A, et al. Depression-like episodes in mice harboring mtDNA deletions in paraventricular thalamus. Mol Psychiatry. 2016;21:39–48.

    Article  PubMed  CAS  Google Scholar 

  32. Gaebel W, Zielasek J. Schizophrenia in 2020: Trends in diagnosis and therapy. Psychiatry Clin Neurosci. 2015;69:661–73.

    Article  PubMed  Google Scholar 

  33. Cho DH, Park JH, Joo Lee E, Jong Won K, Lee SH, Kim YH, et al. Valproic acid increases NO production via the SH-PTP1-CDK5-eNOS-Ser(116) signaling cascade in endothelial cells and mice. Free Radic Biol Med. 2014;76:96–106.

    Article  PubMed  CAS  Google Scholar 

  34. Feinstein DL. Potentiation of astroglial nitric oxide synthase type-2 expression by lithium chloride. J Neurochem. 1998;71:883–6.

    Article  PubMed  CAS  Google Scholar 

  35. Yokoyama S, Yasui-Furukori N, Nakagami T, Miyazaki K, Ishioka M, Tarakita N, et al. Association between the serum carnitine level and ammonia and valproic acid levels in patients with bipolar disorder. Therapeutic Drug Monit. 2020;42:766–70.

    Article  CAS  Google Scholar 

  36. Kadriu B, Farmer CA, Yuan P, Park LT, Deng ZD, Moaddel R, et al. The kynurenine pathway and bipolar disorder: intersection of the monoaminergic and glutamatergic systems and immune response. Mol Psychiatry. 2021;26:4085–95.

    Article  PubMed  Google Scholar 

  37. Claes S, Myint AM, Domschke K, Del-Favero J, Entrich K, Engelborghs S, et al. The kynurenine pathway in major depression: haplotype analysis of three related functional candidate genes. Psychiatry Res. 2011;188:355–60.

    Article  PubMed  CAS  Google Scholar 

  38. Lavebratt C, Olsson S, Backlund L, Frisén L, Sellgren C, Priebe L, et al. The KMO allele encoding Arg452 is associated with psychotic features in bipolar disorder type 1, and with increased CSF KYNA level and reduced KMO expression. Mol Psychiatry. 2014;19:334–41.

    Article  PubMed  CAS  Google Scholar 

  39. Pramod AB, Foster J, Carvelli L, Henry LK. SLC6 transporters: structure, function, regulation, disease association and therapeutics. Mol Asp Med. 2013;34:197–219.

    Article  CAS  Google Scholar 

  40. Mazei-Robison MS, Couch RS, Shelton RC, Stein MA, Blakely RD. Sequence variation in the human dopamine transporter gene in children with attention deficit hyperactivity disorder. Neuropharmacology. 2005;49:724–36.

    Article  PubMed  CAS  Google Scholar 

  41. Rapoport SI, Basselin M, Kim HW, Rao JS. Bipolar disorder and mechanisms of action of mood stabilizers. Brain Res Rev. 2009;61:185–209.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Rapoport SI. Lithium and the other mood stabilizers effective in bipolar disorder target the rat brain arachidonic acid cascade. ACS Chem Neurosci. 2014;5:459–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Cheon Y, Park JY, Modi HR, Kim HW, Lee HJ, Chang L, et al. Chronic olanzapine treatment decreases arachidonic acid turnover and prostaglandin E2 concentration in rat brain. J Neurochem. 2011;119:364–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Lee HJ, Ghelardoni S, Chang L, Bosetti F, Rapoport SI, Bazinet RP. Topiramate does not alter the kinetics of arachidonic or docosahexaenoic acid in brain phospholipids of the unanesthetized rat. Neurochem Res. 2005;30:677–83.

    Article  PubMed  CAS  Google Scholar 

  45. Gracia-Garcia P, Rao V, Haughey NJ, Bandaru VV, Smith G, Rosenberg PB, et al. Elevated plasma ceramides in depression. J Neuropsychiatry Clin Neurosci. 2011;23:215–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gulbins E, Palmada M, Reichel M, Lüth A, Böhmer C, Amato D, et al. Acid sphingomyelinase-ceramide system mediates effects of antidepressant drugs. Nat Med. 2013;19:934–8.

    Article  PubMed  CAS  Google Scholar 

  47. Kornhuber J, Müller CP, Becker KA, Reichel M, Gulbins E. The ceramide system as a novel antidepressant target. Trends Pharmacol Sci. 2014;35:293–304.

    Article  PubMed  CAS  Google Scholar 

  48. Gabandé-Rodríguez E, Boya P, Labrador V, Dotti CG, Ledesma MD. High sphingomyelin levels induce lysosomal damage and autophagy dysfunction in Niemann Pick disease type A. Cell Death Differ. 2014;21:864–75.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Keam SJ. Olipudase alfa: first approval. Drugs. 2022;82:941–7.

    Article  PubMed  CAS  Google Scholar 

  50. McCormack PL, Goa KL. Miglustat. Drugs. 2003;63:2427–34.

    Article  PubMed  CAS  Google Scholar 

  51. Vykoukal J, Fahrmann JF, Gregg JR, Tang Z, Basourakos S, Irajizad E, et al. Caveolin-1-mediated sphingolipid oncometabolism underlies a metabolic vulnerability of prostate cancer. Nat Commun. 2020;11:4279.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ikeda M, Takahashi A, Kamatani Y, Okahisa Y, Kunugi H, Mori N, et al. A genome-wide association study identifies two novel susceptibility loci and trans population polygenicity associated with bipolar disorder. Mol Psychiatry. 2018;23:639–47.

    Article  PubMed  CAS  Google Scholar 

  53. Stahl EA, Breen G, Forstner AJ, McQuillin A, Ripke S, Trubetskoy V, et al. Genome-wide association study identifies 30 loci associated with bipolar disorder. Nat Genet. 2019;51:793–803.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Yamamoto H, Lee-Okada HC, Ikeda M, Nakamura T, Saito T, Takata A, et al. GWAS-identified bipolar disorder risk allele in the FADS1/2 gene region links mood episodes and unsaturated fatty acid metabolism in mutant mice. Mol Psychiatry. 2023;28:2848–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Stacey D, Benyamin B, Lee SH, Hyppönen E. A metabolome-wide mendelian randomization study identifies dysregulated arachidonic acid synthesis as a potential causal risk factor for bipolar disorder. Biol Psychiatry. 2024;96:455–62.

    Article  PubMed  CAS  Google Scholar 

  56. Kaeser PS, Regehr WG. Molecular mechanisms for synchronous, asynchronous, and spontaneous neurotransmitter release. Annu Rev Physiol. 2014;76:333–63.

    Article  PubMed  CAS  Google Scholar 

  57. Bhalla A, Tucker WC, Chapman ER. Synaptotagmin isoforms couple distinct ranges of Ca2+, Ba2+, and Sr2+ concentration to SNARE-mediated membrane fusion. Mol Biol Cell. 2005;16:4755–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Shen W, Wang QW, Liu YN, Marchetto MC, Linker S, Lu SY, et al. Synaptotagmin-7 is a key factor for bipolar-like behavioral abnormalities in mice. Proc Natl Acad Sci USA. 2020;117:4392–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Bertolino A, Frye M, Callicott JH, Mattay VS, Rakow R, Shelton-Repella J, et al. Neuronal pathology in the hippocampal area of patients with bipolar disorder: a study with proton magnetic resonance spectroscopic imaging. Biol Psychiatry. 2003;53:906–13.

    Article  PubMed  Google Scholar 

  60. Wang QW, Wang YH, Wang B, Chen Y, Lu SY, Yao J. Synaptotagmin-7-mediated activation of spontaneous NMDAR currents is disrupted in bipolar disorder susceptibility variants. PLoS Biol. 2021;19:e3001323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Keogh CE, Kim DHJ, Pusceddu MM, Knotts TA, Rabasa G, Sladek JA, et al. Myelin as a regulator of development of the microbiota-gut-brain axis. Brain, Behavior, Immun. 2021;91:437–50.

    Article  CAS  Google Scholar 

  62. Wang LN, Zhang Z. [Mendelian randomization approach, used for causal inferences]. Zhonghua liu xing bing xue za zhi = Zhonghua liuxingbingxue zazhi. 2017;38:547–52.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank all investigators and participants from the groups for sharing these data.

Author information

Authors and Affiliations

Authors

Contributions

QZ: Writing – Original Draft; Writing – Review & Editing; Visualization. AB, DL, and HC: Writing – Review & Editing. FZ: Conceptualization; Formal Analysis; Supervision. All authors contributed to the revision of the manuscript. All authors approved the final version. FZ is the guarantor of this work and, as such, has full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis.

Corresponding author

Correspondence to Fuquan Zhang.

Ethics declarations

Ethics approval and consent to participate

This study adheres to the STROBE-MR guidelines. The genome-wide association study cohorts used in this research received ethical approval, and informed consents were obtained as documented in the original studies from which these datasets were derived.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Q., Baranova, A., Liu, D. et al. Bidirectional causal associations between plasma metabolites and bipolar disorder. Mol Psychiatry 30, 3998–4005 (2025). https://doi.org/10.1038/s41380-025-02977-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-02977-3

This article is cited by

Search

Quick links