Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mettl3 regulates the pathogenesis of Alzheimer’s disease via fine-tuning Lingo2

Abstract

Alzheimer’s disease (AD) is the most common neurodegenerative disease, and diverse factors contribute to its pathogenesis. Previous studies have suggested the dysregulation of m6A modification involves in AD, but the underlying mechanism and targets remain largely unknown. In the present study, we have shown that the levels of Mettl3 and m6A modification are increased in specific brain regions of 5xFAD mice and post-mortem AD patients, respectively. Heterozygous deletion of neuronal Mettl3 (AD::Mettl3+/−) reduced Aβ plaques and inflammation, and improved learning and memory of AD mice, and vice versa for Mettl3 knock in (AD::Mettl3-KI). Mechanistically, we observed that the level of m6A modification of Lingo2 increased in 5xFAD mice and AD patients, which promoted the binding of Ythdf2 and enhanced the degradation of Lingo2 mRNA. The decreased level of Lingo2 promoted the interaction between APP and β-site amyloid precursor protein cleaving enzyme (Bace1), and subsequently enhanced Aβ production in AD mice, which can be inhibited by Mettl3 depletion. Both ectopic Lingo2 and the administration of Mettl3 inhibitor STM2457 significantly alleviated the neuropathology and behavioral deficits of AD mice. In summary, our study has revealed the important function of Mettl3 and m6A in the pathogenesis of AD and provided novel insight for the underlying mechanisms. Our study also suggests that m6A and Lingo2 could be potential therapeutic targets for AD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The altered expression of Mettl3 and m6A in the brain of AD model mice and AD patients.
Fig. 2: Neuronal Mettl3 modulates Aβ production, inflammation and cognition of AD model mice.
Fig. 3: Mettl3 regulates the inflammation and cognitive function of AD model mice.
Fig. 4: Increased m6A modification of Lingo2 enhances its degradation via promoting YTHDF2 binding in the brains of AD model mice and human patients.
Fig. 5: Mettl3 regulates the interaction between Lingo2-Bace1 and APP-Bace1.
Fig. 6: Ectopic Lingo2 reduces the production of Aβ and inhibits the inflammation in the brain of AD model mice.
Fig. 7: The administration of Mettl3 inhibitor STM2457 enhances Lingo2 expression and ameliorates the deficits of AD model mice.

Similar content being viewed by others

Data availability

RNA-seq data have been deposited in GEO and the accession number is GSE268253.

Code availability

RNA-seq data have been deposited in GEO and the accession number is GSE268253.

References

  1. Knopman DS, Amieva H, Petersen RC, Chetelat G, Holtzman DM, Hyman BT, et al. Alzheimer disease. Nat Rev Dis Primers. 2021;7:33.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Masters CL, Bateman R, Blennow K, Rowe CC, Sperling RA, Cummings JL. Alzheimer’s disease. Nat Rev Dis Primers. 2015;1:15056.

    Article  PubMed  Google Scholar 

  3. Zhao J, Paganini L, Mucke L, Gordon M, Refolo L, Carman M, et al. Beta-secretase processing of the beta-amyloid precursor protein in transgenic mice is efficient in neurons but inefficient in astrocytes. J Biol Chem. 1996;271:31407–11.

    Article  CAS  PubMed  Google Scholar 

  4. Calhoun ME, Burgermeister P, Phinney AL, Stalder M, Tolnay M, Wiederhold KH, et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA. 1999;96:14088–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang H, Kulas JA, Wang C, Holtzman DM, Ferris HA, Hansen SB. Regulation of beta-amyloid production in neurons by astrocyte-derived cholesterol. Proc Natl Acad Sci USA. 2021;118:e2102191118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.

    Article  PubMed  Google Scholar 

  7. Sims JR, Zimmer JA, Evans CD, Lu M, Ardayfio P, Sparks J, et al. Donanemab in early symptomatic Alzheimer disease: The TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA. 2023;330:512–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Algamal M, Russ AN, Miller MR, Hou SS, Maci M, Munting LP, et al. Reduced excitatory neuron activity and interneuron-type-specific deficits in a mouse model of Alzheimer’s disease. Commun Biol. 2022;5:1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold KH, Haass C, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science. 2008;321:1686–9.

    Article  CAS  PubMed  Google Scholar 

  10. Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007;55:697–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang W, Xiong BR, Zhang LQ, Huang X, Yuan X, Tian YK, et al. The role of the GABAergic system in diseases of the central nervous system. Neuroscience. 2021;470:88–99.

    Article  CAS  PubMed  Google Scholar 

  12. Melgosa-Ecenarro L, Doostdar N, Radulescu CI, Jackson JS, Barnes SJ. Pinpointing the locus of GABAergic vulnerability in Alzheimer’s disease. Semin Cell Dev Biol. 2023;139:35–54.

    Article  CAS  PubMed  Google Scholar 

  13. Nuriel T, Angulo SL, Khan U, Ashok A, Chen Q, Figueroa HY, et al. Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer’s disease-like pathology. Nat Commun. 2017;8:1464.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Boulias K, Greer EL. Biological roles of adenine methylation in RNA. Nat Rev Genet. 2023;24:143–60.

    Article  CAS  PubMed  Google Scholar 

  15. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    Article  CAS  PubMed  Google Scholar 

  16. Livneh I, Moshitch-Moshkovitz S, Amariglio N, Rechavi G, Dominissini D. The m(6)A epitranscriptome: transcriptome plasticity in brain development and function. Nat Rev Neurosci. 2020;21:36–51.

    Article  CAS  PubMed  Google Scholar 

  17. Xiong X, James BT, Boix CA, Park YP, Galani K, Victor MB, et al. Epigenomic dissection of Alzheimer’s disease pinpoints causal variants and reveals epigenome erosion. Cell. 2023;186:4422–37.e4421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Berson A, Nativio R, Berger SL, Bonini NM. Epigenetic regulation in neurodegenerative diseases. Trends Neurosci. 2018;41:587–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nativio R, Lan Y, Donahue G, Sidoli S, Berson A, Srinivasan AR, et al. An integrated multi-omics approach identifies epigenetic alterations associated with Alzheimer’s disease. Nat Genet. 2020;52:1024–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gao C, Shen X, Tan Y, Chen S. Pathogenesis, therapeutic strategies and biomarker development based on “omics” analysis related to microglia in Alzheimer’s disease. J Neuroinflammation. 2022;19:215.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Castro-Hernandez R, Berulava T, Metelova M, Epple R, Pena Centeno T, Richter J, et al. Conserved reduction of m(6)A RNA modifications during aging and neurodegeneration is linked to changes in synaptic transcripts. Proc Natl Acad Sci USA. 2023;120:e2204933120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Han M, Liu Z, Xu Y, Liu X, Wang D, Li F, et al. Abnormality of m6A mRNA methylation is involved in Alzheimer’s disease. Front Neurosci. 2020;14:98.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yin H, Ju Z, Zheng M, Zhang X, Zuo W, Wang Y, et al. Loss of the m6A methyltransferase METTL3 in monocyte-derived macrophages ameliorates Alzheimer’s disease pathology in mice. PLoS Biol. 2023;21:e3002017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Huang H, Camats-Perna J, Medeiros R, Anggono V, Widagdo J. Altered expression of the m6A methyltransferase METTL3 in Alzheimer’s disease. eNeuro 2020;7:ENEURO.0125-20.2020.

  25. Shafik AM, Zhang F, Guo Z, Dai Q, Pajdzik K, Li Y, et al. N6-methyladenosine dynamics in neurodevelopment and aging, and its potential role in Alzheimer’s disease. Genome Biol. 2021;22:17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao F, Xu Y, Gao S, Qin L, Austria Q, Siedlak SL, et al. METTL3-dependent RNA m(6)A dysregulation contributes to neurodegeneration in Alzheimer’s disease through aberrant cell cycle events. Mol Neurodegener. 2021;16:70.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Liu Z, Xia Q, Zhao X, Zheng F, Xiao J, Ge F, et al. The landscape of m6A regulators in multiple brain regions of Alzheimer’s disease. Mol Neurobiol. 2023;60:5184–98.

    Article  CAS  PubMed  Google Scholar 

  28. Jiang L, Lin W, Zhang C, Ash PEA, Verma M, Kwan J, et al. Interaction of tau with HNRNPA2B1 and N(6)-methyladenosine RNA mediates the progression of tauopathy. Mol Cell. 2021;81:4209–4227.e4212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jiang L, Roberts R, Wong M, Zhang L, Webber CJ, Libera J, et al. beta-amyloid accumulation enhances microtubule associated protein tau pathology in an APP(NL-G-F)/MAPT(P301S) mouse model of Alzheimer’s disease. Front Neurosci. 2024;18:1372297.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tang Z, Cao J, Yao J, Fan X, Zhao J, Zhao M, et al. KDM1A-mediated upregulation of METTL3 ameliorates Alzheimer’s disease via enhancing autophagic clearance of p-Tau through m6A-dependent regulation of STUB1. Free Radic Biol Med. 2023;195:343–58.

    Article  CAS  PubMed  Google Scholar 

  31. Miller JA, Woltjer RL, Goodenbour JM, Horvath S, Geschwind DH. Genes and pathways underlying regional and cell type changes in Alzheimer’s disease. Genome Med. 2013;5:48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44:e91.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lee Y, Choe J, Park OH, Kim YK. Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet. 2020;36:177–88.

    Article  CAS  PubMed  Google Scholar 

  34. Park OH, Ha H, Lee Y, Boo SH, Kwon DH, Song HK, et al. Endoribonucleolytic cleavage of m(6)A-Containing RNAs by RNase P/MRP complex. Mol Cell. 2019;74:494–507.e498.

    Article  CAS  PubMed  Google Scholar 

  35. Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, et al. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 2016;7:12626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tan J, Evin G. Β-site APP-cleaving enzyme 1 trafficking and Alzheimer’s disease pathogenesis. J Neurochemistry. 2012;120:869–80.

    Article  CAS  Google Scholar 

  37. Haass C, Lemere CA, Capell A, Citron M, Seubert P, Schenk D, et al. The Swedish mutation causes early-onset Alzheimer’s disease by beta-secretase cleavage within the secretory pathway. Nat Med. 1995;1:1291–6.

    Article  CAS  PubMed  Google Scholar 

  38. Yankova E, Blackaby W, Albertella M, Rak J, De Braekeleer E, Tsagkogeorga G, et al. Small-molecule inhibition of METTL3 as a strategy against myeloid leukaemia. Nature. 2021;593:597–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wu YW, Prakash KM, Rong TY, Li HH, Xiao Q, Tan LC, et al. Lingo2 variants associated with essential tremor and Parkinson’s disease. Hum Genet. 2011;129:611–5.

    Article  CAS  PubMed  Google Scholar 

  40. Vilarino-Guell C, Wider C, Ross OA, Jasinska-Myga B, Kachergus J, Cobb SA, et al. LINGO1 and LINGO2 variants are associated with essential tremor and Parkinson disease. Neurogenetics. 2010;11:401–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schwartz S, Mumbach MR, Jovanovic M, Wang T, Maciag K, Bushkin GG, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 2014;8:284–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yue Y, Liu J, Cui X, Cao J, Luo G, Zhang Z, et al. VIRMA mediates preferential m(6)A mRNA methylation in 3’UTR and near stop codon and associates with alternative polyadenylation. Cell Discov. 2018;4:10.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li P, Marshall L, Oh G, Jakubowski JL, Groot D, He Y, et al. Epigenetic dysregulation of enhancers in neurons is associated with Alzheimer’s disease pathology and cognitive symptoms. Nat Commun. 2019;10:2246.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Chopra N, Wang R, Maloney B, Nho K, Beck JS, Pourshafie N, et al. MicroRNA-298 reduces levels of human amyloid-beta precursor protein (APP), beta-site APP-converting enzyme 1 (BACE1) and specific tau protein moieties. Mol Psychiatry. 2021;26:5636–57.

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Z, Li XG, Wang ZH, Song M, Yu SP, Kang SS, et al. delta-Secretase-cleaved Tau stimulates Abeta production via upregulating STAT1-BACE1 signaling in Alzheimer’s disease. Mol Psychiatry. 2021;26:586–603.

    Article  CAS  PubMed  Google Scholar 

  46. Luo Y, Bolon B, Kahn S, Bennett BD, Babu-Khan S, Denis P, et al. Mice deficient in BACE1, the Alzheimer’s beta-secretase, have normal phenotype and abolished beta-amyloid generation. Nat Neurosci. 2001;4:231–2.

    Article  CAS  PubMed  Google Scholar 

  47. Hampel H, Hardy J, Blennow K, Chen C, Perry G, Kim SH, et al. The Amyloid-beta pathway in Alzheimer’s disease. Mol Psychiatry. 2021;26:5481–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. De Strooper B, Vassar R, Golde T. The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat Rev Neurol. 2010;6:99–107.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Chen K, Nan J, Xiong X. Genetic regulation of m(6)A RNA methylation and its contribution in human complex diseases. Sci China Life Sci. 2024.

  50. Li L, Xia X, Yang T, Sun Y, Liu X, Xu W, et al. RNA methylation: a potential therapeutic target in autoimmune disease. Int Rev Immunol. 2024;43:160–77.

    Article  CAS  PubMed  Google Scholar 

  51. Wang C, Hou X, Guan Q, Zhou H, Zhou L, Liu L, et al. RNA modification in cardiovascular disease: implications for therapeutic interventions. Signal Transduct Target Ther. 2023;8:412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yang L, Tian S, Zheng X, Zhang M, Zhou X, Shang Y, et al. N6-methyladenosine RNA methylation in liver diseases: from mechanism to treatment. J Gastroenterol. 2023;58:718–33.

    Article  CAS  PubMed  Google Scholar 

  53. Pomaville MM, He C. Advances in targeting RNA modifications for anticancer therapy. Trends Cancer. 2023;9:528–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li C, Xu P, Huang Y, Wang Y, Wu Y, Li H, et al. RNA methylations in depression, from pathological mechanism to therapeutic potential. Biochem Pharmacol. 2023;215:115750.

    Article  CAS  PubMed  Google Scholar 

  55. Xu QC, Tien YC, Shi YH, Chen S, Zhu YQ, Huang XT, et al. METTL3 promotes intrahepatic cholangiocarcinoma progression by regulating IFIT2 expression in an m(6)A-YTHDF2-dependent manner. Oncogene. 2022;41:1622–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang ZW, Teng X, Zhao F, Ma C, Zhang J, Xiao LF, et al. METTL3 regulates m(6)A methylation of PTCH1 and GLI2 in Sonic hedgehog signaling to promote tumor progression in SHH-medulloblastoma. Cell Rep. 2022;41:111530.

    Article  CAS  PubMed  Google Scholar 

  57. Gao J, Fang Y, Chen J, Tang Z, Tian M, Jiang X, et al. Methyltransferase like 3 inhibition limits intrahepatic cholangiocarcinoma metabolic reprogramming and potentiates the efficacy of chemotherapy. Oncogene. 2023;42:2507–20.

    Article  CAS  PubMed  Google Scholar 

  58. Zhang Z, Wang M, Xie D, Huang Z, Zhang L, Yang Y, et al. METTL3-mediated N(6)-methyladenosine mRNA modification enhances long-term memory consolidation. Cell Res. 2018;28:1050–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Dong X, Shu L, Zhang J, Yang X, Cheng X, Zhao X, et al. Ogt-mediated O-GlcNAcylation inhibits astrocytes activation through modulating NF-kappaB signaling pathway. J Neuroinflammation. 2023;20:146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Cheng J, Dong Y, Ma J, Pan R, Liao Y, Kong X, et al. Microglial Calhm2 regulates neuroinflammation and contributes to Alzheimer’s disease pathology. Sci Adv. 2021;7:eabe3600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mahan TE, Wang C, Bao X, Choudhury A, Ulrich JD, Holtzman DM. Selective reduction of astrocyte apoE3 and apoE4 strongly reduces Abeta accumulation and plaque-related pathology in a mouse model of amyloidosis. Mol Neurodegener. 2022;17:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wang W, Zhao X, Shao Y, Duan X, Wang Y, Li J, et al. Mutation-induced DNMT1 cleavage drives neurodegenerative disease. Sci Adv. 2021;7:eabe8511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhang C, Chen Y, Sun B, Wang L, Yang Y, Ma D, et al. m(6)A modulates haematopoietic stem and progenitor cell specification. Nature. 2017;549:273–6.

    Article  CAS  PubMed  Google Scholar 

  65. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, et al. Lactylation-driven METTL3-mediated RNA m(6)A modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol Cell. 2022;82:1660–1677.e1610.

    Article  CAS  PubMed  Google Scholar 

  67. Lo AC, Haass C, Wagner SL, Teplow DB, Sisodia SS. Metabolism of the “Swedish” amyloid precursor protein variant in Madin-Darby canine kidney cells. J Biol Chem. 1994;269:30966–73.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Natural Science Foundation of Zhejiang Province (LD25H090001 to X.L.) and the National Key Research and Development Program of China (2017YFE0196600 to X.L.), and the Youth Innovation Promotion Association of CAS (Y2022040 to Y.Y.). We wish to thank the National Health and Disease Human Brain Tissue Resource Center for providing brain materials.

Author information

Authors and Affiliations

Authors

Contributions

XL conceptualized the project. XZ and QS performed immunostaining, qRT-PCR, western blots and immunoprecipitation with the help of XH and ZL CM, YC, YY and WQ analyzed MeRIP-seq data. XZ and A B analyzed human samples. XL, YY and BS discussed the data analysis. XL wrote the manuscript with the help of XZ, YY and BS.

Corresponding authors

Correspondence to Binggui Sun, Ying Yang or Xuekun Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Ma, C., Sun, Q. et al. Mettl3 regulates the pathogenesis of Alzheimer’s disease via fine-tuning Lingo2. Mol Psychiatry 30, 4047–4063 (2025). https://doi.org/10.1038/s41380-025-02984-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-02984-4

Search

Quick links