Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutation of CHD7 impairs the output of neuroepithelium transition that is reversed by the inhibition of EZH2

Abstract

Haploinsufficiency of CHD7 (Chromo-Helicase-DNA binding protein 7) causes a severe congenital disease CHARGE syndrome. Brain anomaly such as microcephaly and olfactory bulb agenesis seen in CHARGE patients have not been mimicked in previous animal models. Here, we uncover an indispensable function of CHD7 in the neuroepithelium (NE) but not in the neural stem cells (NSCs) after NE transition. Loss of Chd7 in mouse NE resulted in CHARGE-like brain anomalies due to reduced proliferation and differentiation of neural stem and progenitor cells, which were recapitulated in CHD7 KO human forebrain organoids. Mechanistically, we find that CHD7 activates neural transcription factors by removing the repressive histone mark H3K27me3 and promoting chromatin accessibility. Importantly, neurodevelopmental defects caused by CHD7 loss in human brain organoids and mice were ameliorated by the inhibition of H3K27me3 methyltransferase EZH2. Altogether, by implementing appropriate experimental models, we uncover the pathogenesis of CHD7-associated neurodevelopmental diseases, and identify a potential therapeutic opportunity for CHARGE syndrome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ablation of Chd7 in mouse NE leads to microcephaly and OB hypoplasia.
Fig. 2: Loss of CHD7 impairs neuroepithelium expansion in human brain organoids.
Fig. 3: CHD7 is required for the activation of neural TFs in NE by maintaining an open chromatin structure.
Fig. 4: EZH2 inhibition leads to PAX6 reactivation and rescues neurodevelopmental defects in CHD7 KO brain organoids.
Fig. 5: Inhibition of EZH2 during the NE stage rescues OB development, midline hypoplasia, and GnRH migration in Chd7Sox1-cKO mice.
Fig. 6: CHD7 binds to its target genes and interacts with H3K27me3 demethylases and H3K4 methyltransferase complex.

Similar content being viewed by others

Data availability

All sequencing data are deposited in GSE255572 (reviewer token: mluhgmwmtjurjor).

References

  1. Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304.

    Article  CAS  PubMed  Google Scholar 

  2. Vissers LE, van Ravenswaaij CM, Admiraal R, Hurst JA, de Vries BB, Janssen IM, et al. Mutations in a new member of the chromodomain gene family cause CHARGE syndrome. Nat Genet. 2004;36:955–7.

    Article  CAS  PubMed  Google Scholar 

  3. Kim HG, Kurth I, Lan F, Meliciani I, Wenzel W, Eom SH, et al. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet. 2008;83:511–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. de Geus CM, Free RH, Verbist BM, Sival DA, Blake KD, Meiners LC, et al. Guidelines in CHARGE syndrome and the missing link: Cranial imaging. Am J Med Genet C Semin Med Genet. 2017;175:450–64.

    Article  PubMed  PubMed Central  Google Scholar 

  5. van Ravenswaaij-Arts CM, Hefner M, Blake K, Martin DM. CHD7 disorder. Available from https://www.ncbi.nlm.nih.gov/books/NBK1117/.

  6. Feng W, Shao C, Liu HK. Versatile roles of the chromatin remodeler CHD7 during brain development and disease. Front Mol Neurosci. 2017;10:309.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Forni PE, Wray S. GnRH, anosmia and hypogonadotropic hypogonadism–where are we? Front Neuroendocrinol. 2015;36:165–77.

    Article  CAS  PubMed  Google Scholar 

  8. Feng W, Kawauchi D, Korkel-Qu H, Deng H, Serger E, Sieber L, et al. Chd7 is indispensable for mammalian brain development through activation of a neuronal differentiation programme. Nat Commun. 2017;8:14758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Reddy NC, Majidi SP, Kong L, Nemera M, Ferguson CJ, Moore M, et al. CHARGE syndrome protein CHD7 regulates epigenomic activation of enhancers in granule cell precursors and gyrification of the cerebellum. Nat Commun. 2021;12:5702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Whittaker DE, Riegman KL, Kasah S, Mohan C, Yu T, Pijuan-Sala B, et al. The chromatin remodeling factor CHD7 controls cerebellar development by regulating reelin expression. J Clin Invest. 2017;127:874–87.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yu T, Meiners LC, Danielsen K, Wong MT, Bowler T, Reinberg D, et al. Deregulated FGF and homeotic gene expression underlies cerebellar vermis hypoplasia in CHARGE syndrome. Elife. 2013;2:e01305.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Doi T, Ogata T, Yamauchi J, Sawada Y, Tanaka S, Nagao M. Chd7 Collaborates with Sox2 to regulate activation of oligodendrocyte precursor cells after spinal cord injury. J Neurosci. 2017;37:10290–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He D, Marie C, Zhao C, Kim B, Wang J, Deng Y, et al. Chd7 cooperates with Sox10 and regulates the onset of CNS myelination and remyelination. Nat Neurosci. 2016;19:678–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Marie C, Clavairoly A, Frah M, Hmidan H, Yan J, Zhao C, et al. Oligodendrocyte precursor survival and differentiation requires chromatin remodeling by Chd7 and Chd8. Proc Natl Acad Sci USA. 2018;115:E8246–E8255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Feng W, Khan MA, Bellvis P, Zhu Z, Bernhardt O, Herold-Mende C, et al. The chromatin remodeler CHD7 regulates adult neurogenesis via activation of SoxC transcription factors. Cell Stem Cell. 2013;13:62–72.

    Article  CAS  PubMed  Google Scholar 

  16. Jones KM, Saric N, Russell JP, Andoniadou CL, Scambler PJ, Basson MA. CHD7 maintains neural stem cell quiescence and prevents premature stem cell depletion in the adult hippocampus. Stem Cell. 2015;33:196–210.

    Article  CAS  Google Scholar 

  17. Micucci JA, Layman WS, Hurd EA, Sperry ED, Frank SF, Durham MA, et al. CHD7 and retinoic acid signaling cooperate to regulate neural stem cell and inner ear development in mouse models of CHARGE syndrome. Hum Mol Genet. 2014;23:434–48.

    Article  CAS  PubMed  Google Scholar 

  18. Gotz M, Huttner WB. The cell biology of neurogenesis. Nat Rev Mol Cell Biol. 2005;6:777–88.

    Article  PubMed  Google Scholar 

  19. Albert M, Kalebic N, Florio M, Lakshmanaperumal N, Haffner C, Brandl H, et al. Epigenome profiling and editing of neocortical progenitor cells during development. EMBO J. 2017;36:2642–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hurd EA, Capers PL, Blauwkamp MN, Adams ME, Raphael Y, Poucher HK, et al. Loss of Chd7 function in gene-trapped reporter mice is embryonic lethal and associated with severe defects in multiple developing tissues. Mamm Genome. 2007;18:94–104.

    Article  CAS  PubMed  Google Scholar 

  21. Bosman EA, Penn AC, Ambrose JC, Kettleborough R, Stemple DL, Steel KP. Multiple mutations in mouse Chd7 provide models for CHARGE syndrome. Hum Mol Genet. 2005;14:3463–76.

    Article  CAS  PubMed  Google Scholar 

  22. Kelava I, Lancaster MA. Stem cell models of human brain development. Cell Stem Cell. 2016;18:736–48.

    Article  CAS  PubMed  Google Scholar 

  23. Di Lullo E, Kriegstein AR. The use of brain organoids to investigate neural development and disease. Nat Rev Neurosci. 2017;18:573–84.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Amin ND, Pasca SP. Building models of brain disorders with three-dimensional organoids. Neuron. 2018;100:389–405.

    Article  CAS  PubMed  Google Scholar 

  25. Li M, Izpisua Belmonte JC. Organoids - preclinical models of human disease. reply. N Engl J Med. 2019;380:1982.

    Article  PubMed  Google Scholar 

  26. Gage PJ, Hurd EA, Martin DM. Mouse models for the dissection of CHD7 functions in eye development and the molecular basis for ocular defects in CHARGE syndrome. Invest Ophthalmol Vis Sci. 2015;56:7923–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Legendre M, Gonzales M, Goudefroye G, Bilan F, Parisot P, Perez MJ, et al. Antenatal spectrum of CHARGE syndrome in 40 fetuses with CHD7 mutations. J Med Genet. 2012;49:698–707.

    Article  CAS  PubMed  Google Scholar 

  28. Blustajn J, Kirsch CF, Panigrahy A, Netchine I. Olfactory anomalies in CHARGE syndrome: imaging findings of a potential major diagnostic criterion. AJNR Am J Neuroradiol. 2008;29:1266–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang X, Huang CT, Chen J, Pankratz MT, Xi J, Li J, et al. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell. 2010;7:90–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chai M, Sanosaka T, Okuno H, Zhou Z, Koya I, Banno S, et al. Chromatin remodeler CHD7 regulates the stem cell identity of human neural progenitors. Genes Dev. 2018;32:165–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Eckler MJ, Chen B. Fez family transcription factors: controlling neurogenesis and cell fate in the developing mammalian nervous system. Bioessays. 2014;36:788–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Islam MM, Zhang CL. TLX: a master regulator for neural stem cell maintenance and neurogenesis. Biochim Biophys Acta. 2015;1849:210–6.

    Article  CAS  PubMed  Google Scholar 

  33. Hou PS, hAilin DO, Vogel T, Hanashima C. Transcription and beyond: delineating FOXG1 function in cortical development and disorders. Front Cell Neurosci. 2020;14:35.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Kikkawa T, Osumi N. Multiple functions of the dmrt genes in the development of the central nervous system. Front Neurosci. 2021;15:789583.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tocco C, Bertacchi M, Studer M. Structural and functional aspects of the neurodevelopmental gene NR2F1: from animal models to human pathology. Front Mol Neurosci. 2021;14:767965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tutukova S, Tarabykin V, Hernandez-Miranda LR. The role of neurod genes in brain development, function, and disease. Front Mol Neurosci. 2021;14:662774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ochi S, Manabe S, Kikkawa T, Osumi N. Thirty years’ history since the discovery of Pax6: from central nervous system development to neurodevelopmental disorders. Int J Mol Sci. 2022;23:6115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Baek S, Goldstein I, Hager GL. Bivariate genomic footprinting detects changes in transcription factor activity. Cell Rep. 2017;19:1710–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cecchi C, Boncinelli E. Emx homeogenes and mouse brain development. Trends Neurosci. 2000;23:347–52.

    Article  CAS  PubMed  Google Scholar 

  40. Acampora D, Barone P, Simeone A. Otx genes in corticogenesis and brain development. Cereb Cortex. 1999;9:533–42.

    Article  CAS  PubMed  Google Scholar 

  41. Chenn A, Walsh CA. Regulation of cerebral cortical size by control of cell cycle exit in neural precursors. Science. 2002;297:365–9.

    Article  CAS  PubMed  Google Scholar 

  42. Caprio C, Lania G, Bilio M, Ferrentino R, Chen L, Baldini A. EZH2 is required for parathyroid and thymic development through differentiation of the third pharyngeal pouch endoderm. Dis Model Mech. 2021;14:dmm046789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wells MF, Nemesh J, Ghosh S, Mitchell JM, Salick MR, Mello CJ, et al. Natural variation in gene expression and viral susceptibility revealed by neural progenitor cell villages. Cell Stem Cell. 2023;30:312–32 e313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chen S, Ma J, Wu F, Xiong LJ, Ma H, Xu W, et al. The histone H3 Lys 27 demethylase JMJD3 regulates gene expression by impacting transcriptional elongation. Genes Dev. 2012;26:1364–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ufartes R, Grun R, Salinas G, Sitte M, Kahl F, Wong MTY, et al. CHARGE syndrome and related disorders: a mechanistic link. Hum Mol Genet. 2021;30:2215–24.

    Article  CAS  PubMed  Google Scholar 

  46. Yan S, Thienthanasit R, Chen D, Engelen E, Bruhl J, Crossman DK, et al. CHD7 regulates cardiovascular development through ATP-dependent and -independent activities. Proc Natl Acad Sci USA. 2020;117:28847–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Falk A, Koch P, Kesavan J, Takashima Y, Ladewig J, Alexander M, et al. Capture of neuroepithelial-like stem cells from pluripotent stem cells provides a versatile system for in vitro production of human neurons. PLoS One. 2012;7:e29597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Kriegstein A, Alvarez-Buylla A. The glial nature of embryonic and adult neural stem cells. Annu Rev Neurosci. 2009;32:149–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Benito-Kwiecinski S, Giandomenico SL, Sutcliffe M, Riis ES, Freire-Pritchett P, Kelava I, et al. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell. 2021;184:2084–102 e2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Eze UC, Bhaduri A, Haeussler M, Nowakowski TJ, Kriegstein AR. Single-cell atlas of early human brain development highlights heterogeneity of human neuroepithelial cells and early radial glia. Nat Neurosci. 2021;24:584–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Daubresse G, Deuring R, Moore L, Papoulas O, Zakrajsek I, Waldrip WR, et al. The Drosophila kismet gene is related to chromatin-remodeling factors and is required for both segmentation and segment identity. Development. 1999;126:1175–87.

    Article  CAS  PubMed  Google Scholar 

  52. Ahmed M, Moon R, Prajapati RS, James E, Basson MA, Streit A. The chromatin remodelling factor Chd7 protects auditory neurons and sensory hair cells from stress-induced degeneration. Commun Biol. 2021;4:1260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Karwacki-Neisius V, Jang A, Cukuroglu E, Tai A, Jiao A, Predes D, et al. WNT signalling control by KDM5C during development affects cognition. Nature. 2024;627:594–603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hockemeyer D, Soldner F, Beard C, Gao Q, Mitalipova M, DeKelver RC, et al. Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases. Nat Biotechnol. 2009;27:851–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Xiang Y, Tanaka Y, Cakir B, Patterson B, Kim KY, Sun P, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell. 2019;24:487–97 e487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lancaster MA, Renner M, Martin CA, Wenzel D, Bicknell LS, Hurles ME, et al. Cerebral organoids model human brain development and microcephaly. Nature. 2013;501:373–9.

    Article  CAS  PubMed  Google Scholar 

  57. Renier N, Wu Z, Simon DJ, Yang J, Ariel P, Tessier-Lavigne M. iDISCO: a simple, rapid method to immunolabel large tissue samples for volume imaging. Cell. 2014;159:896–910.

    Article  CAS  PubMed  Google Scholar 

  58. Susaki EA, Tainaka K, Perrin D, Yukinaga H, Kuno A, Ueda HR. Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat Protoc. 2015;10:1709–27.

    Article  CAS  PubMed  Google Scholar 

  59. Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, et al. An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods. 2017;14:959–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xu W, He C, Kaye EG, Li J, Mu M, Nelson GM, et al. Dynamic control of chromatin-associated m(6)A methylation regulates nascent RNA synthesis. Mol Cell. 2022;82:1156–68 e1157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Nil Aygün and Anna Neuerburg for technical support. We acknowledge Dr. Ning Sun for providing reagents. The graphical cartoons were from BioRender.

Funding

This study was supported by National Key R&D Program of China (2022YFA0806603; 2021YFA1300100); National Natural Science Foundation of China (81974229; 82171167; 31925010; 32300461; 82330049); Shanghai Municipal Science and Technology Major Project (2017SHZDZX01) and the CHARGE Syndrome Foundation Scientific Research Grant (2017) and China National Postdoctoral Program for Innovative Talents (BX20230098).

Author information

Authors and Affiliations

Authors

Contributions

WF, FL, WZ and HKL conceived and designed the study. ZH performed murine experiments with assistant from MZ, SD and YH. GW, MZ and ZH performed brain organoid experiments. CH performed epigenomic assays and bioinformatical analysis with assistant from GW. XT, CZ performed tissue clearing, imaging and analysis with the supervision from YF. WF and FL supervised the project, prepared figures and wrote the manuscript.

Corresponding authors

Correspondence to Fei Lan or Weijun Feng.

Ethics declarations

Competing interests

Fei Lan is a scientific co-founder and stockholder of Active Motif Shanghai, Inc. and Alternative Bio, Inc. All other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., He, C., Wang, G. et al. Mutation of CHD7 impairs the output of neuroepithelium transition that is reversed by the inhibition of EZH2. Mol Psychiatry 30, 4094–4109 (2025). https://doi.org/10.1038/s41380-025-02990-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-02990-6

Search

Quick links