Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Acute and chronic stress differentially regulate pain via distinct ensembles in the paraventricular nucleus of hypothalamus

Abstract

Stress impacts pain sensation and its development, but the underlying neural mechanisms are largely unclear. Using restraint stress models and complete Freund’s adjuvant-induced pain model in male mice, we demonstrated that acute restraint stress (ARS) induces analgesia in both naïve and pain states. In contrast, chronic restraint stress (CRS) enhances pain hypersensitivity in naïve states, prolongs pain duration, and promotes anxiodepressive symptoms in pain states. Notably, ARS and CRS distinctly activate neuronal ensembles in the paraventricular nucleus of the hypothalamus (PVN). Using the targeted recombination in active populations strategy and chemogenetics, we found that these neuronal ensembles mediate the effects of acute and chronic stress on pain sensation and development. Furthermore, through a two-vector strategy and chemogenetic approach, these neuronal ensembles appear to exert their effects via PVN-locus coeruleus and PVN-lateral septum projections, respectively. Overall, our findings offer novel insights into pain sensation and pain chronification, and may provide effective therapeutic strategies for clinical pain and emotional comorbidities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distinct impacts of acute and chronic stress on pain and associated emotional states.
Fig. 2: Activation of neuronal ensembles in the PVN by ARS and CRS.
Fig. 3: The influence of TRAP-ARS neurons in the PVN on pain and associated emotional states.
Fig. 4: The impact of TRAP-CRS neurons in the PVN on pain and associated emotional states.
Fig. 5: The effects of ARS were mediated by the PVN-LC projection.
Fig. 6: The effects of CRS were mediated by the PVN-LS projection.

Similar content being viewed by others

Data availability

All data to support the conclusions are present in the paper or supplementary materials. Because the raw data are huge and presented in diverse formats, the raw data are available from the corresponding author upon request.

References

  1. Dahlhamer J, Lucas J, Zelaya C, Nahin R, Mackey S, DeBar L, et al. Prevalence of chronic pain and high-impact chronic pain among adults - United States, 2016. MMWR Morb Mortal Wkly Rep. 2018;67:1001–6.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dudeney J, Aaron RV, Hathway T, Bhattiprolu K, Bisby MA, McGill LS, et al. Anxiety and depression in youth with chronic pain: a systematic review and meta-analysis. JAMA Pediatr. 2024;178:1114–23.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wiech K, Tracey I. The influence of negative emotions on pain: behavioral effects and neural mechanisms. Neuroimage. 2009;47:987–94.

    Article  PubMed  Google Scholar 

  4. Butler RK, Finn DP. Stress-induced analgesia. Prog Neurobiol. 2009;88:184–202.

    Article  PubMed  CAS  Google Scholar 

  5. Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S, Tuttle AH, et al. Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat Methods. 2014;11:629–32.

    Article  PubMed  CAS  Google Scholar 

  6. Jennings EM, Okine BN, Roche M, Finn DP. Stress-induced hyperalgesia. Prog Neurobiol. 2014;121:1–18.

    Article  PubMed  Google Scholar 

  7. Vachon-Presseau E. Effects of stress on the corticolimbic system: implications for chronic pain. Prog Neuropsychopharmacol Biol Psychiatry. 2018;87:216–23.

    Article  PubMed  CAS  Google Scholar 

  8. Timmers I, Quaedflieg CWEM, Hsu C, Heathcote LC, Rovnaghi CR, Simons LE. The interaction between stress and chronic pain through the lens of threat learning. Neurosci Biobehav Rev. 2019;107:641–55.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vidal C, Girault JM, Jacob J. The effect of pituitary removal on pain regulation in the rat. Brain Res. 1982;233:53–64.

    Article  PubMed  CAS  Google Scholar 

  10. Bodnar RJ, Glusman M, Brutus M, Spiaggia A, Kelly DD. Analgesia induced by cold-water stress: attenuation following hypophysectomy. Physiol Behav. 1979;23:53–62.

    Article  PubMed  CAS  Google Scholar 

  11. Hu S-W, Zhang Q, Xia S-H, Zhao W-N, Li Q-Z, Yang J-X, et al. Contralateral projection of anterior cingulate cortex contributes to mirror-image pain. J Neurosci. 2021;41:9988–10003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Root CM, Denny CA, Hen R, Axel R. The participation of cortical amygdala in innate, odour-driven behaviour. Nature. 2014;515:269–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Wang D, Pan X, Zhou Y, Wu Z, Ren K, Liu H, et al. Lateral septum-lateral hypothalamus circuit dysfunction in comorbid pain and anxiety. Mol Psychiatry. 2023;28:1090–1100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhang X, He T, Wu Z, Wang Y, Liu H, Zhang B, et al. The role of CD38 in inflammation-induced depression-like behavior and the antidepressant effect of (R)-ketamine. Brain Behav Immun. 2024;115:64–79.

    Article  PubMed  CAS  Google Scholar 

  15. Guenthner CJ, Miyamichi K, Yang HH, Heller HC, Luo L. Permanent genetic access to transiently active neurons via TRAP: targeted recombination in active populations. Neuron. 2013;78:773–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Jeong M, Choi J-H, Jang H, Sohn DH, Wang Q, Lee J, et al. Viral vector-mediated transgene delivery with novel recombinase systems for targeting neuronal populations defined by multiple features. Neuron. 2024;112:56–72.e54.

    Article  PubMed  CAS  Google Scholar 

  17. Xu Z, Hu S-W, Zhou Y, Guo Q, Wang D, Gao Y-H, et al. Corticotropin-releasing factor neurones in the paraventricular nucleus of the hypothalamus modulate isoflurane anaesthesia and its responses to acute stress in mice. Br J Anaesth. 2023;130:446–58.

    Article  PubMed  CAS  Google Scholar 

  18. Xiong F, Yang H, Song Y-G, Qin H-B, Zhang Q-Y, Huang X, et al. An HSV-1-H129 amplicon tracer system for rapid and efficient monosynaptic anterograde neural circuit tracing. Nat Commun. 2022;13:7645.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Lee H-J, Chang L-Y, Ho Y-C, Teng S-F, Hwang L-L, Mackie K, et al. Stress induces analgesia via orexin 1 receptor-initiated endocannabinoid/CB1 signaling in the mouse periaqueductal gray. Neuropharmacology. 2016;105:577–86.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Li J, Sha L, Xu Q. An early increase in glutamate is critical for the development of depression-like behavior in a chronic restraint stress (CRS) model. Brain Res Bull. 2020;162:59–66.

    Article  PubMed  CAS  Google Scholar 

  21. Pan Z, Zhang Q, Liu X, Zhou H, Jin T, Hao L-Y, et al. Methyltransferase-like 3 contributes to inflammatory pain by targeting TET1 in YTHDF2-dependent manner. Pain. 2021;162:1960–76.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang S, Yang X-N, Zang T, Luo J, Pan Z, Wang L, et al. Astroglial MicroRNA-219-5p in the ventral tegmental area regulates nociception in rats. Anesthesiology. 2017;127:548–64.

    Article  PubMed  CAS  Google Scholar 

  23. Wolf G, Yirmiya R, Kreisel T, Goshen I, Weidenfeld J, Poole S, et al. Interleukin-1 signaling modulates stress-induced analgesia. Brain Behav Immun. 2007;21:652–9.

    Article  PubMed  CAS  Google Scholar 

  24. Abdelhamid RE, Kovacs KJ, Pasley JD, Nunez MG, Larson AA. Forced swim-induced musculoskeletal hyperalgesia is mediated by CRF2 receptors but not by TRPV1 receptors. Neuropharmacology. 2013;72:29–37.

    Article  PubMed  CAS  Google Scholar 

  25. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci. 2009;10:397–409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ferguson AV, Latchford KJ, Samson WK. The paraventricular nucleus of the hypothalamus - a potential target for integrative treatment of autonomic dysfunction. Expert Opin Ther Targets. 2008;12:717–27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sawchenko PE, Swanson LW, Vale WW. Corticotropin-releasing factor: co-expression within distinct subsets of oxytocin-, vasopressin-, and neurotensin-immunoreactive neurons in the hypothalamus of the male rat. J Neurosci. 1984;4:1118–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Liu Y, Li A, Bair-Marshall C, Xu H, Jee HJ, Zhu E, et al. Oxytocin promotes prefrontal population activity via the PVN-PFC pathway to regulate pain. Neuron. 2023;111:1795–811.e1797.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Eliava M, Melchior M, Knobloch-Bollmann HS, Wahis J, da Silva Gouveia M, Tang Y, et al. A new population of parvocellular oxytocin neurons controlling magnocellular neuron activity and inflammatory pain processing. Neuron. 2016;89:1291–304.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li Y-C, Zhang F-C, Li D, Weng R-X, Yu Y, Gao R, et al. Distinct circuits and molecular targets of the paraventricular hypothalamus decode visceral and somatic pain. Neuron. 2024;112:3734–49.e3735.

    Article  PubMed  CAS  Google Scholar 

  31. Li Y-J, Du W-J, Liu R, Zan G-Y, Ye B-L, Li Q, et al. Paraventricular nucleus-central amygdala oxytocinergic projection modulates pain-related anxiety-like behaviors in mice. CNS Neurosci Ther. 2023;29:3493–506.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chang X, Zhang H, Chen S. Neural circuits regulating visceral pain. Commun Biol. 2024;7:457.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Suárez-Pereira I, Llorca-Torralba M, Bravo L, Camarena-Delgado C, Soriano-Mas C, Berrocoso E. The role of the locus coeruleus in pain and associated stress-related disorders. Biol Psychiatry. 2022;91:786–97.

    Article  PubMed  Google Scholar 

  34. Atzori M, Cuevas-Olguin R, Esquivel-Rendon E, Garcia-Oscos F, Salgado-Delgado RC, Saderi N, et al. Locus ceruleus norepinephrine release: a central regulator of CNS spatio-temporal activation? Front Synaptic Neurosci. 2016;8:25.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Menon R, Süß T, Oliveira VEM, Neumann ID, Bludau A. Neurobiology of the lateral septum: regulation of social behavior. Trends Neurosci. 2022;45:27–40.

    Article  PubMed  CAS  Google Scholar 

  36. Li Y-C, Wang Q, Li M-G, Hu S-F, Xu G-Y. A paraventricular hypothalamic nucleus input to ventral of lateral septal nucleus controls chronic visceral pain. Pain. 2023;164:625–37.

    Article  PubMed  CAS  Google Scholar 

  37. Xu Y, Lu Y, Cassidy RM, Mangieri LR, Zhu C, Huang X, et al. Identification of a neurocircuit underlying regulation of feeding by stress-related emotional responses. Nat Commun. 2019;10:3446.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chapman CR, Tuckett RP, Song CW. Pain and stress in a systems perspective: reciprocal neural, endocrine, and immune interactions. J Pain. 2008;9:122–45.

    Article  PubMed  Google Scholar 

  39. Ahmad AH, Zakaria R. Pain in times of stress. Malays J Med Sci. 2015;22:52–61.

    PubMed  PubMed Central  Google Scholar 

  40. Heim C, Newport DJ, Mletzko T, Miller AH, Nemeroff CB. The link between childhood trauma and depression: insights from HPA axis studies in humans. Psychoneuroendocrinology. 2008;33:693–710.

    Article  PubMed  CAS  Google Scholar 

  41. Grau JW, Hyson RL, Maier SF, Madden J, Barchas JD. Long-term stress-induced analgesia and activation of the opiate system. Science. 1981;213:1409–11.

    Article  PubMed  CAS  Google Scholar 

  42. Hohmann AG, Suplita RL, Bolton NM, Neely MH, Fegley D, Mangieri R, et al. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;435:1108–12.

    Article  PubMed  CAS  Google Scholar 

  43. Lee MT, Chiu Y-T, Chiu Y-C, Hor CC, Lee H-J, Guerrini R, et al. Neuropeptide S-initiated sequential cascade mediated by OX1, NK1, mGlu5 and CB1 receptors: a pivotal role in stress-induced analgesia. J Biomed Sci. 2020;27:7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Xie X, Wisor JP, Hara J, Crowder TL, LeWinter R, Khroyan TV, et al. Hypocretin/orexin and nociceptin/orphanin FQ coordinately regulate analgesia in a mouse model of stress-induced analgesia. J Clin Invest. 2008;118:2471–81.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Dong Y, Li Y, Xiang X, Xiao Z-C, Hu J, Li Y, et al. Stress relief as a natural resilience mechanism against depression-like behaviors. Neuron. 2023;111:3789–801.e6.

    Article  PubMed  CAS  Google Scholar 

  46. Xia S-H, Hu S-W, Ge D-G, Liu D, Wang D, Zhang S, et al. Chronic pain impairs memory formation via disruption of neurogenesis mediated by mesohippocampal brain-derived neurotrophic factor signaling. Biol Psychiatry. 2020;88:597–610.

    Article  PubMed  Google Scholar 

  47. Chen S, Xu H, Dong S, Xiao L. Morpho-electric properties and diversity of oxytocin neurons in paraventricular nucleus of hypothalamus in female and male mice. J Neurosci. 2022;42:2885–904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Lefevre A, Benusiglio D, Tang Y, Krabichler Q, Charlet A, Grinevich V. Oxytocinergic feedback circuitries: an anatomical basis for neuromodulation of social behaviors. Front Neural Circuits. 2021;15:688234.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Walker LC, Cornish LC, Lawrence AJ, Campbell EJ. The effect of acute or repeated stress on the corticotropin releasing factor system in the CRH-IRES-Cre mouse: a validation study. Neuropharmacology. 2019;154:96–106.

    Article  PubMed  CAS  Google Scholar 

  50. Jiang Z, Rajamanickam S, Justice NJ. CRF signaling between neurons in the paraventricular nucleus of the hypothalamus (PVN) coordinates stress responses. Neurobiol Stress. 2019;11:100192.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ramot A, Jiang Z, Tian J-B, Nahum T, Kuperman Y, Justice N, et al. Hypothalamic CRFR1 is essential for HPA axis regulation following chronic stress. Nat Neurosci. 2017;20:385–8.

    Article  PubMed  CAS  Google Scholar 

  52. Neufeld-Cohen A, Kelly PAT, Paul ED, Carter RN, Skinner E, Olverman HJ, et al. Chronic activation of corticotropin-releasing factor type 2 receptors reveals a key role for 5-HT1A receptor responsiveness in mediating behavioral and serotonergic responses to stressful challenge. Biol Psychiatry. 2012;72:437–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Cayupe B, Troncoso B, Morgan C, Sáez-Briones P, Sotomayor-Zárate R, Constandil L, et al. The role of the paraventricular-coerulear network on the programming of hypertension by prenatal undernutrition. Int J Mol Sci. 2022;23:11965.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Dunn AJ, Swiergiel AH, Palamarchouk V. Brain circuits involved in corticotropin-releasing factor-norepinephrine interactions during stress. Ann N Y Acad Sci. 2004;1018:25–34.

    Article  PubMed  CAS  Google Scholar 

  55. Flak JN, Myers B, Solomon MB, McKlveen JM, Krause EG, Herman JP. Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress. Eur J Neurosci. 2014;39:1903–11.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Kwon MS, Seo YJ, Shim EJ, Choi SS, Lee JY, Suh HW. The effect of single or repeated restraint stress on several signal molecules in paraventricular nucleus, arcuate nucleus and locus coeruleus. Neuroscience. 2006;142:1281–92.

    Article  PubMed  CAS  Google Scholar 

  57. Parikh D, Hamid A, Friedman TC, Nguyen K, Tseng A, Marquez P, et al. Stress-induced analgesia and endogenous opioid peptides: the importance of stress duration. Eur J Pharmacol. 2011;650:563–7.

    Article  PubMed  CAS  Google Scholar 

  58. Vaughan CW. Stressed-out endogenous cannabinoids relieve pain. Trends Pharmacol Sci. 2006;27:69–71.

    Article  PubMed  CAS  Google Scholar 

  59. Colmers PLW, Bains JS. Presynaptic mGluRs control the duration of endocannabinoid-mediated DSI. J Neurosci. 2018;38:10444–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Zhang Q-J, Yang J, Wang Y-M, Cong R, Zhu G-Q, Wang Z-J, et al. Effects of mu opioid receptors in paraventricular nucleus on ejaculation through mediating sympathetic nerve system activity. Neuropharmacology. 2019;158:107709.

    Article  PubMed  CAS  Google Scholar 

  61. Ji N-N, Cao S, Song X-L, Pei B, Jin C-Y, Fan B-F, et al. Glutamatergic neurons in the paraventricular nucleus of the hypothalamus participate in the regulation of visceral pain induced by pancreatic cancer in mice. Hepatobiliary Surg Nutr. 2024;13:258–72.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ji R-R, Xu Z-Z, Gao Y-J. Emerging targets in neuroinflammation-driven chronic pain. Nat Rev Drug Discov. 2014;13:533–48.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. White AG, Elias E, Orozco A, Robinson SA, Manners MT. Chronic stress-induced neuroinflammation: relevance of rodent models to human disease. Int J Mol Sci. 2024;25:5085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Woodburn SC, Bollinger JL, Wohleb ES. The semantics of microglia activation: neuroinflammation, homeostasis, and stress. J Neuroinflammation. 2021;18:258.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Walker DM, Zhou X, Cunningham AM, Lipschultz AP, Ramakrishnan A, Cates HM, et al. Sex-specific transcriptional changes in response to adolescent social stress in the Brain’s reward circuitry. Biol Psychiatry. 2022;91:118–28.

    Article  PubMed  CAS  Google Scholar 

  66. Mogil JS. Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci. 2020;21:353–65.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge Prof. Hongxing Zhang (Xuzhou Medical University, Xuzhou, China) for the guidance in use of transgenic mice, and Drs. Chunhua Zhang, Ruyi Zhang, Huiwen Zhang, Yaxi Zhang, Ying Liang and Ran Hu (Core Facility of The First Affiliated Hospital of Nanjing Medical University, Nanjing, China) for technical support.

Funding

This study was supported by grants from the National Natural Science Foundation of China (81974171 and 82271254 to C.Y., 81720108013, 82293641 and 82130033 to J.L.C., 82401453 to S.H., 82191279 to C.H., 82301444 to Q.Z., 82201420 to D.W., 82401469 to X.Z.), the Sci-Tech Innovation 2030-Major Project (2021ZD0203100 to J.L.C.), Innovative and Entrepreneurial Team of Jiangsu Province (JSSCTD202144 to C.Y.), Jiangsu Basic Research Programs (BK20243035 to J.L.C.), Natural Science Foundation of Jiangsu Province (BK20240054 to C.Y., BK20230741 to S.H., BK20210975 to C.H.), Excellent postdoctoral program of Jiangsu Province (2023ZB599 to S.H.), China Postdoctoral Science Foundation (2023M731409 to S.H., 2023M741467 to Q.Z.) and Wu Jieping Medical Foundation (310.6750.2024-15-82 to S.H., 320.6750.2024-15-81 to Q.Z.).

Author information

Authors and Affiliations

Authors

Contributions

SH, QZ, JJY, CL, CH, JLC, and CY initiated and designed the research. SH, JH, CH and CY wrote the manuscript. SH, JH, QZ, CH, SY, ZW, YW, XZ, DW, YJ, HW, and CZ conducted experiments and analyzed the data. All the authors approved the submission.

Corresponding authors

Correspondence to Chaoli Huang, Jun-Li Cao or Chun Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All experimental manipulations on mice were approved by the Institutional Animal Care and Use Committee of Nanjing Medical University (Registration number: No. IACUC-2307021) and were performed in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals. No human studies were performed. All authors read and approved the final manuscript.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Huang, J., Zhang, Q. et al. Acute and chronic stress differentially regulate pain via distinct ensembles in the paraventricular nucleus of hypothalamus. Mol Psychiatry 31, 649–663 (2026). https://doi.org/10.1038/s41380-025-03144-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-03144-4

Search

Quick links