Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Exploring the therapeutic potential of psychedelics in treating substance use disorders

Abstract

Psychedelics, particularly psilocybin, have garnered significant attention as potential therapeutic tools for treating substance use disorders (SUDs), such as those related to alcohol, nicotine, heroin (an opioid), or cocaine. Traditional treatments often fall short, leading to high relapse rates and an urgent need for innovative approaches. This article explores the emerging role of psychedelics in SUDs therapy, highlighting their ability to disrupt maladaptive neural circuits, promote neuroplasticity, and facilitate profound psychological insights that address the root causes of SUDs. Clinical trials demonstrate promising results across various forms of SUDs, with psilocybin-assisted therapy showing significant reductions in substance use and improved mental health outcomes. Despite the potential, challenges such as legal barriers, safety concerns, and the need for more rigorous research remain. The future of psychedelics in SUDs treatment is cautiously optimistic, with the possibility of transforming the field of SUDs therapy and offering hope to millions of individuals struggling with SUDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Molecular mechanisms of psychedelics in SUDs treatment.

Similar content being viewed by others

References

  1. Hasin DS, O’Brien CP, Auriacombe M, Borges G, Bucholz K, Budney A, et al. DSM-5 criteria for substance use disorders: recommendations and rationale. Am. J. Psychiatry. 2013;170:834–51.

    PubMed  PubMed Central  Google Scholar 

  2. Whiteford HA, Degenhardt L, Rehm J, Baxter AJ, Ferrari AJ, Erskine HE, et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382:1575–86.

    PubMed  Google Scholar 

  3. Florence C, Luo F, Rice K. The economic burden of opioid use disorder and fatal opioid overdose in the United States, 2017. Drug. Alcohol. Depend. 2021;218:108350.

    PubMed  CAS  Google Scholar 

  4. Volkow ND, Blanco C. Medications for opioid use disorders: clinical and pharmacological considerations. J. Clin. Invest. 2020;130:10–13.

    PubMed  CAS  Google Scholar 

  5. McLellan AT, Lewis DC, O’Brien CP, Kleber HD. Drug dependence, a chronic medical illness: implications for treatment, insurance, and outcomes evaluation. JAMA. 2000;284:1689–95.

    PubMed  CAS  Google Scholar 

  6. Carhart-Harris RL, Goodwin GM. The therapeutic potential of psychedelic drugs: past, present, and future. Neuropsychopharmacology. 2017;42:2105–13.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Ly C, Greb AC, Cameron LP, Wong JM, Barragan EV, Wilson PC, et al. Psychedelics promote structural and functional neural plasticity. Cell Rep. 2018;23:3170–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  8. van der Meer PB, Fuentes JJ, Kaptein AA, Schoones JW, de Waal MM, Goudriaan AE, et al. Therapeutic effect of psilocybin in addiction: A systematic review. Front. Psychiatry. 2023;14:1134454.

    PubMed  PubMed Central  Google Scholar 

  9. Dyck E. Hitting highs at rock bottom’: LSD treatment for alcoholism, 1950–1970. Soc. Hist. Med. 2006;19:313–29.

    Google Scholar 

  10. Kaplan RM. Humphry Fortescue Osmond (1917-2004), a radical and conventional psychiatrist: The transcendent years. J. Med. Biogr. 2016;24:115–24.

    PubMed  Google Scholar 

  11. Vollenweider FX, Preller KH. Psychedelic drugs: neurobiology and potential for treatment of psychiatric disorders. Nat. Rev. Neurosci. 2020;21:611–24.

    PubMed  CAS  Google Scholar 

  12. Carhart-Harris RL, Muthukumaraswamy S, Roseman L, Kaelen M, Droog W, Murphy K, et al. Neural correlates of the LSD experience revealed by multimodal neuroimaging. Proc. Natl Acad. Sci. USA. 2016;113:4853–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. Olson DE. Toward translatable biomarkers of psychedelic-induced neuroplasticity. Am. J. Psychiatry. 2025;182:10–12.

    PubMed  Google Scholar 

  14. Vamvakopoulou IA, Nutt DJ. Psychedelics: from cave art to 21st-century medicine for addiction. Eur. Addict. Res. 2024;30:302–20.

    PubMed  Google Scholar 

  15. Kim K, Che T, Panova O, DiBerto JF, Lyu J, Krumm BE, et al. Structure of a hallucinogen-activated Gq-coupled 5-HT(2A) serotonin receptor. Cell. 2020;182:1574–88 e1519.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. Vargas MV, Dunlap LE, Dong C, Carter SJ, Tombari RJ, Jami SA, et al. Psychedelics promote neuroplasticity through the activation of intracellular 5-HT2A receptors. Science. 2023;379:700–6.

    PubMed  PubMed Central  CAS  Google Scholar 

  17. McClure-Begley TD, Roth BL. The promises and perils of psychedelic pharmacology for psychiatry. Nat. Rev. Drug. Discov. 2022;21:463–73.

    PubMed  CAS  Google Scholar 

  18. Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature. 2023;622:802–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Yoon G, Petrakis IL, Krystal JH. Association of combined naltrexone and ketamine with depressive symptoms in a case series of patients with depression and alcohol use disorder. JAMA Psychiatry. 2019;76:337–8.

    PubMed  PubMed Central  Google Scholar 

  20. Slomski A. Ketamine to help treat cocaine use disorder. JAMA. 2019;322:717.

    PubMed  Google Scholar 

  21. Glick SD, Maisonneuve IM, Pearl SM. Evidence for roles of kappa-opioid and NMDA receptors in the mechanism of action of ibogaine. Brain Res. 1997;749:340–3.

    PubMed  CAS  Google Scholar 

  22. Coleman JA, Yang D, Zhao Z, Wen PC, Yoshioka C, Tajkhorshid E, et al. Serotonin transporter-ibogaine complexes illuminate mechanisms of inhibition and transport. Nature. 2019;569:141–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Grieco SF, Castren E, Knudsen GM, Kwan AC, Olson DE, Zuo Y, et al. Psychedelics and neural plasticity: therapeutic implications. J. Neurosci. 2022;42:8439–49.

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Mattick RP, Breen C, Kimber J, Davoli M. Methadone maintenance therapy versus no opioid replacement therapy for opioid dependence. Cochrane Database Syst. Rev. 2009;2009:CD002209.

    PubMed  PubMed Central  Google Scholar 

  25. Dutra L, Stathopoulou G, Basden SL, Leyro TM, Powers MB, Otto MW. A meta-analytic review of psychosocial interventions for substance use disorders. Am. J. Psychiatry. 2008;165:179–87.

    PubMed  Google Scholar 

  26. Schindler EAD, D’Souza DC. The therapeutic potential of psychedelics. Science. 2022;378:1051–3.

    PubMed  CAS  Google Scholar 

  27. Bogenschutz MP, Forcehimes AA, Pommy JA, Wilcox CE, Barbosa PC, Strassman RJ. Psilocybin-assisted treatment for alcohol dependence: a proof-of-concept study. J. Psychopharmacol. 2015;29:289–99.

    PubMed  CAS  Google Scholar 

  28. Bogenschutz MP, Ross S, Bhatt S, Baron T, Forcehimes AA, Laska E, et al. Percentage of heavy drinking days following psilocybin-assisted psychotherapy vs placebo in the treatment of adult patients with alcohol use disorder: a randomized clinical trial. JAMA Psychiatry. 2022;79:953–62.

    PubMed  PubMed Central  Google Scholar 

  29. Tap SC. The potential of 5-methoxy-N,N-dimethyltryptamine in the treatment of alcohol use disorder: a first look at therapeutic mechanisms of action. Addict. Biol. 2024;29:e13386.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. Floris G, Dabrowski KR, Zanda MT, Daws SE. Psilocybin reduces heroin seeking behavior and modulates inflammatory gene expression in the nucleus accumbens and prefrontal cortex of male rats. Mol. Psychiatry. 2024;30:1801–16.

    PubMed  PubMed Central  Google Scholar 

  31. Nichols DE, Johnson MW, Nichols CD. Psychedelics as medicines: an emerging new paradigm. Clin. Pharmacol. Ther. 2017;101:209–19.

    PubMed  CAS  Google Scholar 

  32. Carhart-Harris RL, Friston KJ. REBUS and the anarchic brain: toward a unified model of the brain action of psychedelics. Pharmacol. Rev. 2019;71:316–44.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Pagni BA, Petridis PD, Podrebarac SK, Grinband J, Claus ED, Bogenschutz MP. Psilocybin-induced changes in neural reactivity to alcohol and emotional cues in patients with alcohol use disorder: an fMRI pilot study. Sci. Rep. 2024;14:3159.

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Reinwald JR, Schmitz CN, Skorodumov I, Kuchar M, Weber-Fahr W, Spanagel R, et al. Psilocybin-induced default mode network hypoconnectivity is blunted in alcohol-dependent rats. Transl. Psychiatry. 2023;13:392.

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Johnson MW, Garcia-Romeu A, Griffiths RR. Long-term follow-up of psilocybin-facilitated smoking cessation. Am. J. Drug. Alcohol. Abuse. 2017;43:55–60.

    PubMed  Google Scholar 

  36. Elsila LV, Harkki J, Enberg E, Martti A, Linden AM, Korpi ER. Effects of acute lysergic acid diethylamide on intermittent ethanol and sucrose drinking and intracranial self-stimulation in C57BL/6 mice. J. Psychopharmacol. 2022;36:860–74.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Alper K, Dong B, Shah R, Sershen H, Vinod KY. LSD administered as a single dose reduces alcohol consumption in C57BL/6J mice. Front. Pharmacol. 2018;9:994.

    PubMed  PubMed Central  Google Scholar 

  38. De Gregorio D, Posa L, Ochoa-Sanchez R, McLaughlin R, Maione S, Comai S, et al. The hallucinogen d-lysergic diethylamide (LSD) decreases dopamine firing activity through 5-HT(1A), D(2) and TAAR(1) receptors. Pharmacol. Res. 2016;113:81–91.

    PubMed  Google Scholar 

  39. Belgers M, Leenaars M, Homberg JR, Ritskes-Hoitinga M, Schellekens AF, Hooijmans CR. Ibogaine and addiction in the animal model, a systematic review and meta-analysis. Transl. Psychiatry. 2016;6:e826.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Arenson A, Campbell CI, Remler I. Psychoactive plant derivatives (ayahuasca, ibogaine, kratom) and their application in opioid withdrawal and use disorder - a narrative review. J. Addict. Dis. 2024;42:253–63.

    PubMed  CAS  Google Scholar 

  41. Torrado Pacheco A, Olson RJ, Garza G, Moghaddam B. Acute psilocybin enhances cognitive flexibility in rats. Neuropsychopharmacology. 2023;48:1011–20.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Carhart-Harris RL, Nutt DJ. Serotonin and brain function: a tale of two receptors. J. Psychopharmacol. 2017;31:1091–120.

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Benvenuti F, Colombo D, Soverchia L, Cannella N, Domi E, Ciccocioppo R. Psilocybin prevents reinstatement of alcohol seeking by disrupting the reconsolidation of alcohol-related memories. Psychopharmacology. 2023;240:1521–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Shao LX, Liao C, Davoudian PA, Savalia NK, Jiang Q, Wojtasiewicz C, et al. Psilocybin’s lasting action requires pyramidal cell types and 5-HT(2A) receptors. Nature. 2025;642:411–20. https://doi.org/10.1038/s41586-025-08813-6

    Article  PubMed  CAS  Google Scholar 

  45. De Gregorio D, Popic J, Enns JP, Inserra A, Skalecka A, Markopoulos A, et al. Lysergic acid diethylamide (LSD) promotes social behavior through mTORC1 in the excitatory neurotransmission. Proc. Natl Acad. Sci. USA. 2021;118:e2020705118.

    PubMed  PubMed Central  Google Scholar 

  46. Wallach J, Cao AB, Calkins MM, Heim AJ, Lanham JK, Bonniwell EM, et al. Identification of 5-HT(2A) receptor signaling pathways associated with psychedelic potential. Nat. Commun. 2023;14:8221.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Holz A, Mulsch F, Schwarz MK, Hollmann M, Dobrossy MD, Coenen VA, et al. Enhanced mglu5 signaling in excitatory neurons promotes rapid antidepressant effects via ampa receptor activation. Neuron. 2019;104:338–52 e337.

    PubMed  CAS  Google Scholar 

  48. Li N, Lee B, Liu RJ, Banasr M, Dwyer JM, Iwata M, et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Moya-Alvarado G, Tiburcio-Felix R, Ibanez MR, Aguirre-Soto AA, Guerra MV, Wu C, et al. BDNF/TrkB signaling endosomes in axons coordinate CREB/mTOR activation and protein synthesis in the cell body to induce dendritic growth in cortical neurons. Elife. 2023;12:e77455.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Worrell SD, Gould TJ. Therapeutic potential of ketamine for alcohol use disorder. Neurosci. Biobehav. Rev. 2021;126:573–89.

    PubMed  CAS  Google Scholar 

  51. Inserra A, De Gregorio D, Gobbi G. Psychedelics in psychiatry: neuroplastic, immunomodulatory, and neurotransmitter mechanisms. Pharmacol. Rev. 2021;73:202–77.

    PubMed  CAS  Google Scholar 

  52. Sweetnam PM, Lancaster J, Snowman A, Collins JL, Perschke S, Bauer C, et al. Receptor binding profile suggests multiple mechanisms of action are responsible for ibogaine’s putative anti-addictive activity. Psychopharmacology. 1995;118:369–76.

    PubMed  CAS  Google Scholar 

  53. He DY, Ron D. Autoregulation of glial cell line-derived neurotrophic factor expression: implications for the long-lasting actions of the anti-addiction drug, Ibogaine. FASEB J. 2006;20:2420–2.

    PubMed  CAS  Google Scholar 

  54. Marton S, Gonzalez B, Rodriguez-Bottero S, Miquel E, Martinez-Palma L, Pazos M, et al. Ibogaine administration modifies gdnf and bdnf expression in brain regions involved in mesocorticolimbic and nigral dopaminergic circuits. Front. Pharmacol. 2019;10:193.

    PubMed  PubMed Central  CAS  Google Scholar 

  55. Shao LX, Liao C, Gregg I, Davoudian PA, Savalia NK, Delagarza K, et al. Psilocybin induces rapid and persistent growth of dendritic spines in frontal cortex in vivo. Neuron. 2021;109:2535–44 e2534.

    PubMed  PubMed Central  CAS  Google Scholar 

  56. Strickland JC, Garcia-Romeu A, Johnson MW. Set and Setting: a randomized study of different musical genres in supporting psychedelic therapy. ACS Pharmacol. Transl. Sci. 2021;4:472–8.

    PubMed  CAS  Google Scholar 

  57. Hartogsohn I. Set and setting, psychedelics and the placebo response: an extra-pharmacological perspective on psychopharmacology. J. Psychopharmacol. 2016;30:1259–67.

    PubMed  CAS  Google Scholar 

  58. Heinzerling KG, Sergi K, Linton M, Rich R, Youssef B, Bentancourt I, et al. Nature-themed video intervention may improve cardiovascular safety of psilocybin-assisted therapy for alcohol use disorder. Front. Psychiatry. 2023;14:1215972.

    PubMed  PubMed Central  Google Scholar 

  59. MacLean KA, Johnson MW, Griffiths RR. Mystical experiences occasioned by the hallucinogen psilocybin lead to increases in the personality domain of openness. J. Psychopharmacol. 2011;25:1453–61.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Calleja-Conde J, Morales-Garcia JA, Echeverry-Alzate V, Buhler KM, Gine E, Lopez-Moreno JA. Classic psychedelics and alcohol use disorders: a systematic review of human and animal studies. Addict. Biol. 2022;27:e13229.

    PubMed  CAS  Google Scholar 

  61. Vanderijst L, Hever F, Buot A, Daure C, Benoit J, Hanak C, et al. Psilocybin-assisted therapy for severe alcohol use disorder: protocol for a double-blind, randomized, placebo-controlled, 7-month parallel-group phase II superiority trial. BMC Psychiatry. 2024;24:77.

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Jensen ME, Stenbaek DS, Juul TS, Fisher PM, Ekstrom CT, Knudsen GM, et al. Psilocybin-assisted therapy for reducing alcohol intake in patients with alcohol use disorder: protocol for a randomised, double-blinded, placebo-controlled 12-week clinical trial (The QUANTUM Trip Trial). BMJ Open. 2022;12:e066019.

    PubMed  PubMed Central  Google Scholar 

  63. Johnson MW, Garcia-Romeu A, Cosimano MP, Griffiths RR. Pilot study of the 5-HT2AR agonist psilocybin in the treatment of tobacco addiction. J. Psychopharmacol. 2014;28:983–92.

    PubMed  PubMed Central  Google Scholar 

  64. Elsilä LV, Harkki J, Enberg E, Martti A, Linden AM, Korpi ER. Effects of acute lysergic acid diethylamide on intermittent ethanol and sucrose drinking and intracranial self-stimulation in C57BL/6 mice. J. Psychopharmacol. 2022;36:860–74.

    PubMed  PubMed Central  Google Scholar 

  65. Meinhardt MW, Gungor C, Skorodumov I, Mertens LJ, Spanagel R. Psilocybin and LSD have no long-lasting effects in an animal model of alcohol relapse. Neuropsychopharmacology. 2020;45:1316–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Fuentes JJ, Fonseca F, Elices M, Farre M, Torrens M. Therapeutic use of lsd in psychiatry: a systematic review of randomized-controlled clinical trials. Front. Psychiatry. 2019;10:943.

    PubMed  Google Scholar 

  67. Knuijver T, ter Heine R, Schellekens AFA, Heydari P, Lucas L, Westra S, et al. The pharmacokinetics and pharmacodynamics of ibogaine in opioid use disorder patients. J. Psychopharmacol. 2024;38:481–8.

    PubMed  PubMed Central  CAS  Google Scholar 

  68. O’Hearn E, Molliver ME. The olivocerebellar projection mediates ibogaine-induced degeneration of Purkinje cells: a model of indirect, trans-synaptic excitotoxicity. J. Neurosci. 1997;17:8828–41.

    PubMed  PubMed Central  Google Scholar 

  69. Koenig X, Hilber K. The anti-addiction drug ibogaine and the heart: a delicate relation. Molecules. 2015;20:2208–28.

    PubMed  PubMed Central  Google Scholar 

  70. Brown TK, Alper K. Treatment of opioid use disorder with ibogaine: detoxification and drug use outcomes. Am. J. Drug. Alcohol. Abuse. 2018;44:24–36.

    PubMed  Google Scholar 

  71. Davis AK, Barsuglia JP, Windham-Herman AM, Lynch M, Polanco M. Subjective effectiveness of ibogaine treatment for problematic opioid consumption: short- and long-term outcomes and current psychological functioning. J. Psychedelic Stud. 2017;1:65–73.

    PubMed  PubMed Central  Google Scholar 

  72. He DY, McGough NN, Ravindranathan A, Jeanblanc J, Logrip ML, Phamluong K, et al. Glial cell line-derived neurotrophic factor mediates the desirable actions of the anti-addiction drug ibogaine against alcohol consumption. J. Neurosci. 2005;25:619–28.

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Vastag B. Ibogaine therapy: a ‘Vast, Uncontrolled Experiment’. Science. 2005;308:345–6.

    PubMed  CAS  Google Scholar 

  74. Schenberg EE, de Castro Comis MA, Chaves BR, da Silveira DX. Treating drug dependence with the aid of ibogaine: a retrospective study. J. Psychopharmacol. 2014;28:993–1000.

    PubMed  Google Scholar 

  75. Alper KR, Stajic M, Gill JR. Fatalities temporally associated with the ingestion of ibogaine. J. Forensic Sci. 2012;57:398–412.

    PubMed  CAS  Google Scholar 

  76. Schep LJ, Slaughter RJ, Galea S, Newcombe D. Ibogaine for treating drug dependence. What is a safe dose? Drug. Alcohol. Depend. 2016;166:1–5.

    PubMed  CAS  Google Scholar 

  77. Roberts E Hype or hope? The developing evidence base for psychedelic treatment of addiction disorders. Br J Psychiatry. 2025;1-3. https://doi.org/10.1192/bjp.2025.19

  78. Koenig X, Kovar M, Boehm S, Sandtner W, Hilber K. Anti‐addiction drug ibogaine inhibits hERG channels: a cardiac arrhythmia risk. Addict. Biol. 2012;19:237–9.

    PubMed  Google Scholar 

  79. Brett J, Knock E, Korthuis PT, Liknaitzky P, Murnane KS, Nicholas CR, et al. Exploring psilocybin-assisted psychotherapy in the treatment of methamphetamine use disorder. Front. Psychiatry. 2023;14:1123424.

    PubMed  PubMed Central  Google Scholar 

  80. Barber M, Gardner J, Savic M, Carter A. Ibogaine therapy for addiction: consumer views from online fora. Int. J. Drug. Policy. 2020;83:102857.

    PubMed  Google Scholar 

  81. Nicholas CR, Wang JB, Coker A, Mitchell JM, Klaire SS, Yazar-Klosinski B, et al. The effects of MDMA-assisted therapy on alcohol and substance use in a phase 3 trial for treatment of severe PTSD. Drug. Alcohol. Depend. 2022;233:109356.

    PubMed  PubMed Central  CAS  Google Scholar 

  82. Rush B, Marcus O, Garcia S, Loizaga-Velder A, Loewinger G, Spitalier A, et al. Protocol for outcome evaluation of ayahuasca-assisted addiction treatment: the case of takiwasi center. Front. Pharmacol. 2021;12:659644.

    PubMed  PubMed Central  Google Scholar 

  83. Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. A non-hallucinogenic psychedelic analogue with therapeutic potential. Nature. 2021;589:474–9.

    PubMed  CAS  Google Scholar 

  84. Bogenschutz MP, Podrebarac SK, Duane JH, Amegadzie SS, Malone TC, Owens LT, et al. Clinical interpretations of patient experience in a trial of psilocybin-assisted psychotherapy for alcohol use disorder. Front. Pharmacol. 2018;9:100.

    PubMed  PubMed Central  Google Scholar 

  85. Garcia-Romeu A, Davis AK, Erowid F, Erowid E, Griffiths RR, Johnson MW. Cessation and reduction in alcohol consumption and misuse after psychedelic use. J. Psychopharmacol. 2019;33:1088–101.

    PubMed  Google Scholar 

  86. Doering-Silveira E, Grob CS, de Rios MD, Lopez E, Alonso LK, Tacla C, et al. Report on psychoactive drug use among adolescents using ayahuasca within a religious context. J. Psychoact. Drugs. 2005;37:141–4.

    Google Scholar 

  87. Barsuglia JP, Polanco M, Palmer R, Malcolm BJ, Kelmendi B, Calvey T. A case report SPECT study and theoretical rationale for the sequential administration of ibogaine and 5-MeO-DMT in the treatment of alcohol use disorder. Prog. Brain Res. 2018;242:121–58.

    PubMed  Google Scholar 

  88. Savage C, McCabe OL. Residential psychedelic (LSD) therapy for the narcotic addict. A controlled study. Arch. Gen. Psychiatry. 1973;28:808–14.

    PubMed  CAS  Google Scholar 

  89. Alper KR, Lotsof HS, Frenken GM, Luciano DJ, Bastiaans J. Treatment of acute opioid withdrawal with ibogaine. Am. J. Addict. 1999;8:234–42.

    PubMed  CAS  Google Scholar 

  90. Malcolm BJ, Polanco M, Barsuglia JP. Changes in withdrawal and craving scores in participants undergoing opioid detoxification utilizing ibogaine. J. Psychoact. Drugs. 2018;50:256–65.

    Google Scholar 

  91. Noller GE, Frampton CM, Yazar-Klosinski B. Ibogaine treatment outcomes for opioid dependence from a twelve-month follow-up observational study. Am. J. Drug. Alcohol. Abuse. 2018;44:37–46.

    PubMed  Google Scholar 

  92. Mash DC, Duque L, Page B, Allen-Ferdinand K. Ibogaine detoxification transitions opioid and cocaine abusers between dependence and abstinence: clinical observations and treatment outcomes. Front. Pharmacol. 2018;9:529.

    PubMed  PubMed Central  Google Scholar 

  93. Knuijver T, Schellekens A, Belgers M, Donders R, van Oosteren T, Kramers K, et al. Safety of ibogaine administration in detoxification of opioid-dependent individuals: a descriptive open-label observational study. Addiction. 2021;117:118–28.

    PubMed  PubMed Central  Google Scholar 

  94. Wilkins C, dos Santos RG, Solá J, Aixalá M, Cura P, Moreno E, et al. Detoxification from methadone using low, repeated, and increasing doses of ibogaine: a case report. J. Psychedelic Stud. 2017;1:29–34.

    Google Scholar 

  95. Glue P, Cape G, Tunnicliff D, Lockhart M, Lam F, Hung N, et al. Ascending single-dose, double-blind, placebo-controlled safety study of noribogaine in opioid-dependent patients. Clin. Pharmacol. Drug. Dev. 2016;5:460–8.

    PubMed  CAS  Google Scholar 

  96. Pisano VD, Putnam NP, Kramer HM, Franciotti KJ, Halpern JH, Holden SC. The association of psychedelic use and opioid use disorders among illicit users in the United States. J. Psychopharmacol. 2017;31:606–13.

    PubMed  Google Scholar 

  97. Argento E, Socias ME, Hayashi K, Choi J, Mackay L, Christie D, et al. Psychedelic use is associated with reduced daily opioid use among people who use illicit drugs in a Canadian setting. Int. J. Drug. Policy. 2022;100:103518.

    PubMed  Google Scholar 

  98. Jones GM, Nock MK. Exploring protective associations between the use of classic psychedelics and cocaine use disorder: a population-based survey study. Sci. Rep. 2022;12:2574.

    PubMed  PubMed Central  CAS  Google Scholar 

  99. Fábregas JM, González D, Fondevila S, Cutchet M, Fernández X, Barbosa PC, et al. Assessment of addiction severity among ritual users of ayahuasca. Drug. Alcohol. Depend. 2010;111:257–61.

    PubMed  Google Scholar 

  100. Thomas G, Lucas P, Capler NR, Tupper KW, Martin G. Ayahuasca-assisted therapy for addiction: results from a preliminary observational study in Canada. Curr. Drug. Abuse Rev. 2013;6:30–42.

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22207103, T2350008, T2341003), STI2030-Major Projects [2021ZD0203000 (2021ZD0203003)], International Partnership Program of the Chinese Academy of Sciences (029GJHZ2024057GC), and the Open Research Fund of the State Key Laboratory of Brain-Machine Intelligence, Zhejiang University (Grant No. BMI2400014).

Author information

Authors and Affiliations

Authors

Contributions

YL and HL: organizational framework and construction, paper drafting; HW: paper drafting and revision; XW: proposal, design and final revision.

Corresponding authors

Correspondence to Hongshuang Wang or Xiaohui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, H., Wang, H. et al. Exploring the therapeutic potential of psychedelics in treating substance use disorders. Mol Psychiatry 30, 6134–6143 (2025). https://doi.org/10.1038/s41380-025-03168-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41380-025-03168-w

Search

Quick links