Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The alpha7 nicotinic acetylcholine receptor mediates network dysfunction in a mouse model of local amyloid pathology

Abstract

Patient and animal model data suggest a link between the cholinergic neuromodulatory system and the amyloid beta (Aβ) peptide in causing Alzheimer’s disease (AD). But how cholinergic dysfunctions contribute to AD pathology remains controversial. In a mouse model of local amyloid pathology, we show that in the early disease stages, the α7 nicotinic acetylcholine receptor (nAChR) is an important target of Aβ in the prefrontal cortex (PFC). Using in vivo two-photon calcium imaging and in vivo patch-clamp electrophysiology in the PFC of awake mice, we demonstrate that Aβ-mediated disruption of specifically the α7 nAChR subunit, expressed by distinct interneuron subtypes, results in substantial deficits in network activity. This is corroborated by electrophysiology experiments in slices. Combined with computational modeling, we propose that α7 nAChRs are occluded by Aβ early in the disease, whereas the heteropentameric α5 and β2 nAChRs are only partially inactivated and potentially provide novel therapeutic targets for intervention. Accordingly, we show that galantamine, an approved acetylcholine-esterase inhibitor (AChE-I), which acts as a positive allosteric modulator (PAM) of α5-containing nAChRs at low concentrations, reduces neuronal hyperactivity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Expression of human APP has no effect on PYR neuron activity in layer 2/3 of PrLC in α7KO mice.
Fig. 2: Human Aβ oligomers increase the activity of PV INs.
Fig. 3: Increased membrane potential fluctuations and hyperactivity in PFC PYR neurons in vivo after AAV-hAPP injection.
Fig. 4: Inhibition of α7 nAChRs in vivo mimics the effect of Aβ-induced hyperactivity in PFC PYR.
Fig. 5: α7 nAChRs are occluded in WT-APP mice.
Fig. 6: Human Aβ oligomers differentially inactivate distinct nAChRs during the disease progression.
Fig. 7: Galantamine reduces PYR neuron activity early in AD.

Similar content being viewed by others

Data availability

The data and analysis algorithms are available. The datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The data and analysis algorithms are available.

References

  1. Patterson C World alzheimer report 2018. The state of the art of dementia research: New Frontiers; 2018. https://www.alzint.org/resource/world-alzheimer-report-2018/.

  2. Bartus RT, Dean RL, Beer B, Lippa AS. The cholinergic hypothesis of geriatric memory dysfunction. Science. 1982;217:408–14.

    Article  PubMed  CAS  Google Scholar 

  3. Davies P, Maloney A. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 1976;2:1403.

    Article  PubMed  CAS  Google Scholar 

  4. Whitehouse PJ, Price DL, Struble RG, Clark AW, Coyle JT, Delon MR. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science. 1982;215:1237–9.

    Article  PubMed  CAS  Google Scholar 

  5. Everitt BJ, Robbins TW. Central cholinergic systems and cognition. Annu Rev Psychol. 1997;48:649–84.

    Article  PubMed  CAS  Google Scholar 

  6. Perry E, Walker M, Grace J, Perry R. Acetylcholine in mind: a neurotransmitter correlate of consciousness? Trends Neurosci. 1999;22:273–80.

    Article  PubMed  CAS  Google Scholar 

  7. Suzuki M, Larkum ME. General anesthesia decouples cortical pyramidal neurons. Cell. 2020;180:666–76.e13.

    Article  PubMed  CAS  Google Scholar 

  8. Pal D, Dean JG, Liu T, Li D, Watson CJ, Hudetz AG, et al. Differential role of prefrontal and parietal cortices in controlling level of consciousness. Curr Biol. 2018;28:2145–52.e5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Koukouli F, Rooy M, Changeux J-P, Maskos U. Nicotinic receptors in mouse prefrontal cortex modulate ultraslow fluctuations related to conscious processing. Proc Natl Acad Sci. 2016;113:14823–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Koukouli F, Changeux JP. Do nicotinic receptors modulate high-order cognitive processing? Trends Neurosci. 2020;43:550–64.

    Article  PubMed  CAS  Google Scholar 

  11. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev. 2006. https://doi.org/10.1002/14651858.CD005593.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hampel H, Mesulam M-M, Cuello AC, Farlow MR, Giacobini E, Grossberg GT, et al. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain. 2018;141:1917–33.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Selkoe DJ, Hardy J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med. 2016;8:595–608.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Long JM, Holtzman DM. Alzheimer disease: an update on pathobiology and treatment strategies. Cell. 2019;179:312–39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Liu KY, Howard R. Can we learn lessons from the FDA’s approval of aducanumab? Nat Rev Neurol. 2021. https://doi.org/10.1038/s41582-021-00557-x.

    Article  PubMed  Google Scholar 

  16. Alzheimer_Association. Aducanumab discontinued as an Alzheimer’s treatment. https://www.alz.org/alzheimers-dementia/treatments/aducanumab:2024.

  17. van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.

    Article  PubMed  Google Scholar 

  18. Whitehouse P, Martino A, Antuono P, Lowenstein P, Coyle J, Price D, et al. Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res. 1986;371:146–51.

    Article  PubMed  CAS  Google Scholar 

  19. Nordberg A, Winblad B. Reduced number of [3H]nicotine and [3H]acetylcholine binding sites in the frontal cortex of Alzheimer brains. Neurosci Lett. 1986;72:115–20.

    Article  PubMed  CAS  Google Scholar 

  20. Kadir A, Almkvist O, Wall A, Långström B, Nordberg A. PET imaging of cortical 11C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology. 2006;188:509–20.

    Article  PubMed  CAS  Google Scholar 

  21. Sabri O, Meyer PM, Gräf S, Hesse S, Wilke S, Becker GA, et al. Cognitive correlates of α4β2 nicotinic acetylcholine receptors in mild Alzheimer’s dementia. Brain. 2018;141:1840–54.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lombardo S, Maskos U. Role of the nicotinic acetylcholine receptor in Alzheimer’s disease pathology and treatment. Neuropharmacology. 2015;96:255–62.

    Article  PubMed  CAS  Google Scholar 

  23. Zoli M, Lena C, Picciotto MR, Changeux JP. Identification of four classes of brain nicotinic receptors using beta2 mutant mice. J Neurosci. 1998;18:4461–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Picciotto MR, Zoli M, Lena C, Bessis A, Lallemand Y, Le Novere N, et al. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature. 1995;374:65–7.

    Article  PubMed  CAS  Google Scholar 

  25. George AA, Vieira JM, Xavier-Jackson C, Gee MT, Cirrito JR, Bimonte-Nelson HA, et al. Implications of oligomeric amyloid-beta (oAβ42) signaling through α7β2-nicotinic acetylcholine receptors (nAChRs) on basal forebrain cholinergic neuronal intrinsic excitability and cognitive decline. J Neurosci. 2021;41:555–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Corringer PJ, Le Novere N, Changeux JP. Nicotinic receptors at the amino acid level. Annu Rev Pharmacol Toxicol. 2000;40:431–58.

    Article  PubMed  CAS  Google Scholar 

  27. Parri HR, Hernandez CM, Dineley KT. Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem Pharmacol. 2011;82:931–42.

    Article  PubMed  CAS  Google Scholar 

  28. Wang HY, Lee DH, Davis CB, Shank RP. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J Neurochem. 2000;75:1155–61.

    Article  PubMed  CAS  Google Scholar 

  29. Cecon E, Dam J, Luka M, Gautier C, Chollet AM, Delagrange P, et al. Quantitative assessment of oligomeric amyloid β peptide binding to α 7 nicotinic receptor. Br J Pharmacol. 2019;176:3475–88.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Koukouli F, Maskos U. The multiple roles of the α7 nicotinic acetylcholine receptor in modulating glutamatergic systems in the normal and diseased nervous system. Biochem Pharmacol. 2015;97:378–87.

    Article  PubMed  CAS  Google Scholar 

  31. Wang H-Y, Lee DHS, D’Andrea MR, Peterson PA, Shank RP, Reitz AB. β-Amyloid1–42 binds to α7 nicotinic acetylcholine receptor with high affinity. J Biol Chem. 2000;275:5626–32.

    Article  PubMed  CAS  Google Scholar 

  32. Dziewczapolski G, Glogowski CM, Masliah E, Heinemann SF. Deletion of the {alpha}7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2009;29:8805–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Hernandez CM, Kayed R, Zheng H, Sweatt JD, Dineley KT. Loss of alpha7 nicotinic receptors enhances beta-amyloid oligomer accumulation, exacerbating early-stage cognitive decline and septohippocampal pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2010;30:2442–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Zoli M, Picciotto MR, Ferrari R, Cocchi D, Changeux J-P. Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. EMBO J. 1999;18:1235–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Giorgio J, Adams JN, Maass A, Jagust WJ, Breakspear M. Amyloid induced hyperexcitability in default mode network drives medial temporal hyperactivity and early tau accumulation. Neuron. 2023;112:676–86.e4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Busche MA, Konnerth A. Neuronal hyperactivity – a key defect in Alzheimer’s disease. BioEssays. 2015;37:624–32.

    Article  PubMed  Google Scholar 

  37. Lourenço J, Koukouli F, Bacci A. Synaptic inhibition in the neocortex: orchestration and computation through canonical circuits and variations on the theme. Cortex. 2020;132:258–80.

    Article  PubMed  Google Scholar 

  38. Tremblay R, Lee S, Rudy B. GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91:260–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Huang ZJ, Di Cristo G, Ango F. Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci. 2007;8:673–86.

    Article  PubMed  CAS  Google Scholar 

  40. Koukouli F, Rooy M, Tziotis D, Sailor KA, O’Neill H, Levenga J, et al. Nicotine reverses hypofrontality in animal models of addiction and schizophrenia. Nat Med. 2017;23:347–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Porter JT, Cauli B, Tsuzuki K, Lambolez B, Rossier J, Audinat E. Selective excitation of subtypes of neocortical interneurons by nicotinic receptors. J Neurosci. 1999;19:5228–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Poorthuis RB, Bloem B, Schak B, Wester J, De Kock CPJ, Mansvelder HD. Layer-specific modulation of the prefrontal cortex by nicotinic acetylcholine receptors. Cereb Cortex. 2013;23:148–61.

    Article  PubMed  Google Scholar 

  43. Liu Z, Neff RA, Berg DK. Sequential interplay of nicotinic and GABAergic signaling guides neuronal development. Science. 2006;314:1610–3.

    Article  PubMed  CAS  Google Scholar 

  44. Koukouli F, Rooy M, Maskos U. Early and progressive deficit of neuronal activity patterns in a model of local amyloid pathology in mouse prefrontal cortex. Aging. 2016;8:3430–49.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jaworski T, Dewachter I, Lechat B, Croes S, Termont A, Demedts D, et al. AAV-tau mediates pyramidal neurodegeneration by cell-cycle re-entry without neurofibrillary tangle formation in wild-type mice. PLoS One. 2009;4:e7280.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lafaye P, Achour I, England P, Duyckaerts C, Rougeon F. Single-domain antibodies recognize selectively small oligomeric forms of amyloid beta, prevent Abeta-induced neurotoxicity and inhibit fibril formation. Mol Immunol. 2009;46:695–704.

    Article  PubMed  CAS  Google Scholar 

  47. Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25:7709–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Obermayer J, Verhoog MB, Luchicchi A, Mansvelder HD. Cholinergic modulation of cortical microcircuits is layer-specific: evidence from rodent, monkey and human brain. Front Neural Circuits. 2017;11:1–12.

    Article  Google Scholar 

  49. Poorthuis RB, Bloem B, Verhoog MB, Mansvelder HD. Layer-specific interference with cholinergic signaling in the prefrontal cortex by smoking concentrations of nicotine. J Neurosci. 2013;33:4843–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Busche MA, Eichhoff G, Adelsberger H, Abramowski D, Wiederhold K-H, Haass C, et al. Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer’s disease. Science. 2008;321:1686–9.

    Article  PubMed  CAS  Google Scholar 

  51. Albertson AJ, Landsness EC, Tang MJ, Yan P, Miao H, Rosenthal ZP, et al. Normal aging in mice is associated with a global reduction in cortical spectral power and network-specific declines in functional connectivity. Neuroimage. 2022;257:119287.

    Article  PubMed  Google Scholar 

  52. Lamb PW, Melton MA, Yakel JL. Inhibition of neuronal nicotinic acetylcholine receptor channels expressed in xenopus oocytes by β-Amyloid1-42 peptide. J Mol Neurosci. 2005;27:13–22.

    Article  PubMed  CAS  Google Scholar 

  53. Pandya A, Yakel JL. Allosteric modulator desformylflustrabromine relieves the inhibition of α2β2 and α4β2 nicotinic acetylcholine receptors by β-amyloid(1-42) peptide. J Mol Neurosci. 2011;45:42–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pettit DL, Shao Z, Yakel JL. β-Amyloid(1-42) peptide directly modulates nicotinic receptors in the rat hippocampal slice. J Neurosci. 2001;21:RC120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Palop JJ, Chin J, Roberson ED, Wang J, Thwin MT, Bien-Ly N, et al. Aberrant excitatory neuronal activity and compensatory remodeling of inhibitory hippocampal circuits in mouse models of Alzheimer’s disease. Neuron. 2007;55:697–711.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Anderson JS, Lampl I, Gillespie DC, Ferster D. The contribution of noise to contrast invariance of orientation tuning in cat visual cortex. Science. 2000;290:1968–72.

    Article  PubMed  CAS  Google Scholar 

  57. Keramidis I, Mcallister BB, Bourbonnais J, Wang F, Isabel D, Rezaei E, et al. Restoring neuronal chloride extrusion reverses cognitive decline linked to Alzheimer’s disease mutations. Brain. 2023;146:4903–15.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Albuquerque EX, Pereira EFR, Alkondon M, Rogers SW. Mammalian nicotinic acetylcholine receptors: from structure to function. Physiol Rev. 2009;89:73–120.

    Article  PubMed  CAS  Google Scholar 

  59. Rooy M, Lazarevich I, Koukouli F, Maskos U, Gutkin B. Cholinergic modulation of hierarchical inhibitory control over cortical resting state dynamics: local circuit modeling of schizophrenia-related hypofrontality. Curr Res Neurobiol. 2021;2:100018.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Graupner M, Maex R, Gutkin B. Endogenous cholinergic inputs and local circuit mechanisms govern the phasic mesolimbic dopamine response to nicotine. PLoS Comput Biol. 2013;9:e1003183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kassam SM, Herman PM, Goodfellow NM, Alves NC, Lambe EK. Developmental excitation of corticothalamic neurons by nicotinic acetylcholine receptors. J Neurosci. 2008;28:8756–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Verhoog MB, Obermayer J, Kortleven CA, Wilbers R, Wester J, Baayen JC, et al. Layer-specific cholinergic control of human and mouse cortical synaptic plasticity. Nat Commun. 2016;7:12826.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Coyle JT, Geerts H, Sorra K, Amatniek J. Beyond in vitro data: a review of in vivo evidence regarding the allosteric potentiating effect of galantamine on nicotinic acetylcholine receptors in Alzheimer’s neuropathology. J Alzheimer’s Dis. 2007;11:491–507.

    Article  CAS  Google Scholar 

  64. Hahn B, Reneski CH, Lane M, Elmer GI, Pereira EFR. Evidence for positive allosteric modulation of cognitive-enhancing effects of nicotine by low-dose galantamine in rats. Pharmacol Biochem Behav. 2020;199:219–30.

    Article  Google Scholar 

  65. Monbaliu J, Verhaeghe T, Willems B, Bode W, Lavrijsen K, Meuldermans W. Pharmacokinetics of galantamine, a cholinesterase inhibitor, in several animal species. Arzneimittelforschung. 2003;53:486–95.

    PubMed  CAS  Google Scholar 

  66. Noda Y, Mouri A, Ando Y, Waki Y, Yamada S-N, Yoshimi A, et al. Galantamine ameliorates the impairment of recognition memory in mice repeatedly treated with methamphetamine: involvement of allosteric potentiation of nicotinic acetylcholine receptors and dopaminergic-ERK1/2 systems. Int J Neuropsychopharmacol. 2010;13:1343–54.

    Article  PubMed  CAS  Google Scholar 

  67. Verma S, Kumar A, Tripathi T, Kumar A. Muscarinic and nicotinic acetylcholine receptor agonists: current scenario in Alzheimer’s disease therapy. J Pharm Pharmacol. 2018;70:985–93.

    Article  PubMed  CAS  Google Scholar 

  68. Liu QS, Kawai H, Berg DK. β-Amyloid peptide blocks the response of α7-containing nicotinic receptors on hippocampal neurons. Proc Natl Acad Sci USA. 2001;98:4734–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Epis R, Gardoni F, Marcello E, Genazzani A, Canonico PL, Di Luca M. Searching for new animal models of Alzheimer′s disease. Eur J Pharmacol. 2010;626:57–63.

    Article  PubMed  CAS  Google Scholar 

  70. Lombardo S, Catteau J, Besson M, Maskos U. A role for β2* nicotinic receptors in a model of local amyloid pathology induced in dentate gyrus. Neurobiol Aging. 2016;46:221–34.

    Article  PubMed  CAS  Google Scholar 

  71. Taly A, Corringer P-J, Guedin D, Lestage P, Changeux J-P. Nicotinic receptors: allosteric transitions and therapeutic targets in the nervous system. Nat Rev Drug Discov. 2009;8:733–50.

    Article  PubMed  CAS  Google Scholar 

  72. Prevost MS, Bouchenaki H, Barilone N, Gielen M, Corringer PJ. Concatemers to re-investigate the role of α5 in α4β2 nicotinic receptors. Cell Mol Life Sci. 2021;78:1051–64.

    Article  PubMed  CAS  Google Scholar 

  73. Xu H, Garcia-Ptacek S, Jönsson L, Wimo A, Nordström P, Eriksdotter M. Long-term effects of cholinesterase inhibitors on cognitive decline and mortality. Neurology. 2021;96:e2220–e2230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Wanaverbecq N, Semyanov A, Pavlov I, Walker MC, Kullmann DM. Cholinergic axons modulate GABAergic signaling among hippocampal interneurons via postsynaptic alpha 7 nicotinic receptors. J Neurosci. 2007;27:5683–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Zott B, Simon MM, Hong W, Unger F, Chen-Engerer H-J, Frosch MP, et al. A vicious cycle of β amyloid–dependent neuronal hyperactivation. Science. 2019;365:559–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Hijazi S, Heistek TS, Scheltens P, Neumann U, Shimshek DR, Mansvelder HD, et al. Early restoration of parvalbumin interneuron activity prevents memory loss and network hyperexcitability in a mouse model of Alzheimer’s disease. Mol Psychiatry. 2020;25:3380–98.

    Article  PubMed  CAS  Google Scholar 

  77. Griguoli M, Cherubini E. Regulation of hippocampal inhibitory circuits by nicotinic acetylcholine receptors. J Physiol. 2012;590:655–66.

    Article  PubMed  CAS  Google Scholar 

  78. Orr-Urtreger A, Göldner FM, Saeki M, Lorenzo I, Goldberg L, De Biasi M, et al. Mice deficient in the alpha7 neuronal nicotinic acetylcholine receptor lack alpha-bungarotoxin binding sites and hippocampal fast nicotinic currents. J Neurosci. 1997;17:9165–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Maskos U, Molles BE, Pons S, Besson M, Guiard BP, Guilloux JP, et al. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature. 2005;436:103–7.

    Article  PubMed  CAS  Google Scholar 

  80. Morel C, Fattore L, Pons S, Hay YA, Marti F, Lambolez B, et al. Nicotine consumption is regulated by a human polymorphism in dopamine neurons. Mol Psychiatry. 2014;19:930–6.

    Article  PubMed  CAS  Google Scholar 

  81. Schmidt-Hieber C, Häusser M. Cellular mechanisms of spatial navigation in the medial entorhinal cortex. Nat Neurosci. 2013;16:325–31.

    Article  PubMed  CAS  Google Scholar 

  82. Margrie TW, Brecht M, Sakmann B. In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain. Pflug Arch. 2002;444:491–8.

    Article  CAS  Google Scholar 

  83. Zhao W-J, Kremkow J, Poulet JFA. Translaminar cortical membrane potential synchrony in behaving mice. Cell Rep. 2016;15:2387–99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Ulrich D, Huguenard JR. Purinergic inhibition of GABA and glutamate release in the thalamus: implications for thalamic network activity. Neuron. 1995;15:909–18.

    Article  PubMed  CAS  Google Scholar 

  85. Dombeck D, Tank D. Two-photon imaging of neural activity in awake mobile mice. Cold Spring Harb Protoc. 2014;2014:726–36.

    Article  PubMed  Google Scholar 

  86. Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A. Moving beyond P values: data analysis with estimation graphics. Nat Methods. 2019;16:565–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Noémi Dominique for technical assistance, Matthias Groszer and Florent Haiss for comments on the manuscript, and Ines Ibanez-Tallon for providing the ChAT-Cre transgenic mice. This work was supported by the Fondation pour la Recherche Médicale (FRM Équipe 2019, grant number EQU201903007822), Fondation Vaincre Alzheimer, Fondation Alzheimer-INSERM, Institut Pasteur programme PasteurInnov, CNRS UMR3571, Programme prioritaire TABAC-INSERM, all to U.M., ERC Starting Grant NEWRON to C.S.-H., and the European Union’s Horizon 2020 Framework Programme for Research and Innovation under the Specific Grant Agreement No. 785907, Human Brain Project SGA2 and Specific Grant Agreement No. 720270, Human Brain Project SGA1 (to J.-P.C: CDP6, Modeling Drug Discovery). B.S.G. and I.L. acknowledge support from the Basic Science Fund NRU Higher School of Economics, and received partial support from LABEX ANR-10-LABX-0087 IEC and IDEX ANR-10-IDEX-0001-02 PSL*. The laboratory of U.M. is part of the RTRA Ecole des Neurosciences de Paris ENP network. U.M. is a member of the Laboratory of Excellence LABEX BIOPSY, funded by Agence Nationale de la Recherche. The authors acknowledge the team from the animal facility of BioMedTech Facilities INSERM US36|CNRS UAR2009 | Université Paris Cité. The team of F.K. acknowledges support from the Fondation pour la Recherche Médicale-FRM Amorçage de jeunes équipes 2022 (starting grant number AJE202212016251) and the ATIP-AVENIR starting grant 2023 (INSERM/ French National Institute of Health and Medical Research), all to F.K. Finally, the authors would like to thank Philippe Ascher for his participation in the initial electrophysiology recordings of this paper.

Author information

Authors and Affiliations

Authors

Contributions

FK and CZ carried out in vivo analysis, IL and MR carried out two-photon data analysis and modeling with BG, BLd’I and JP carried out slice electrophysiology, DGS and SP established experimental groups and carried out histological analysis, CT and IN contributed to histology, UM and FK conceived the study, UM, FK, CZ, CS-H, BLd’I and AB designed experiments, UM and FK wrote the paper with contributions from all authors, UM, CS-H and J-PC provided funding.

Corresponding authors

Correspondence to Christoph Schmidt-Hieber or Uwe Maskos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koukouli, F., Zhang, CL., Lazarevich, I. et al. The alpha7 nicotinic acetylcholine receptor mediates network dysfunction in a mouse model of local amyloid pathology. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03241-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-025-03241-4

Search

Quick links