Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantitative monitoring of ketamine’s impact on synaptic density using 11C-UCB-J PET imaging in the corticosterone mouse model of anxiety/depression

Abstract

Ketamine was shown to promote synaptogenesis, which is thought to account for its antidepressant effects through the restoration of lost synaptic connections observed in depression. PET imaging using 11C-UCB-J, a radiotracer targeting the synaptic vesicle protein 2 A (SV2A), was investigated as a translational method to monitor ketamine-induced changes in synaptic density in the corticosterone (CORT) mouse model of anxiety/depression. Male CORT and healthy control mice received either a single dose of ketamine (10 mg/kg, i.p) or a repeated-dose regimen (3 doses in total). Brain PET imaging was performed either 24 h after the single dose or 1 or 3 weeks after the repeated-dose regimen to estimate the binding of 11C-UCB-J in each condition. A global decrease in the binding of 11C-UCB-J was observed in CORT mice compared to control mice, indicating synaptic loss. In CORT mice, behavioral experiments showed antidepressant effects of ketamine 24 h after a single dose, although no significant changes in 11C-UCB-J binding could be observed at this time point. Three weeks after the repeated dose regimen, ketamine restored the binding of 11C-UCB-J in CORT mice to the level of age-matched untreated healthy controls. The reversal of synaptic loss was associated with delayed antidepressant effects in behavioural tests. Ex vivo expression of SV2A protein measured under different conditions was strongly correlated with the in vivo binding of 11C-UCB-J and the postsynaptic marker PSD95. These results support the molecular interpretation of SV2A PET imaging to monitor drug-induced synaptogenesis as a determinant of antidepressant efficacy from a translational perspective.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PET study design.
Fig. 2: Behavioral tests were conducted to address the early and delayed impact of ketamine in control mice and in the corticosterone (CORT) mouse model of depression.
Fig. 3: Impact of ketamine on 11C-UCB-J brain PET kinetics in control mice and in the CORT mouse model of anxiety/depression.
Fig. 4: Voxel-to-voxel comparison of VT-maps obtained after one day (1d), 1 week (1w), or 3 weeks (3w) after ketamine in age-matched control and the corticosterone (CORT) mouse model of depression.
Fig. 5: In vivo / ex vivo correlation of SV2A protein levels and corresponding 11C-UCB-J brain PET data.

Similar content being viewed by others

Data availability

The data supporting this study’s findings are available from the corresponding author upon reasonable request.

References

  1. Depressive disorder (depression). https://www.who.int/news-room/fact-sheets/detail/depression. Accessed 3 February 2025.

  2. Yavi M, Lee H, Henter ID, Park LT, Zarate CA. Ketamine treatment for depression: a review. Discov Ment Health. 2022;2:9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zanos P, Gould TD. Mechanisms of ketamine action as an antidepressant. Mol Psychiatry. 2018;23:801–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Eduardo T-Q, Angela A, Mateo L, Melanie L-Z, Valentina P-F, David C, et al. Ketamine for resistant depression: a scoping review. Actas Esp Psiquiatr. 2022;50:144–59.

    PubMed  Google Scholar 

  5. Krystal JH, Kavalali ET, Monteggia LM. Ketamine and rapid antidepressant action: new treatments and novel synaptic signaling mechanisms. Neuropsychopharmacol. 2024;49:41–50.

    Article  Google Scholar 

  6. Duman RS, Aghajanian GK. Synaptic dysfunction in depression: potential therapeutic targets. Science. 2012;338:68–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Duric V, Banasr M, Stockmeier CA, Simen AA, Newton SS, Overholser JC, et al. Altered expression of synapse and glutamate related genes in post-mortem hippocampus of depressed subjects. Int J Neuropsychopharmacol. 2013;16:69–82.

    Article  PubMed  CAS  Google Scholar 

  8. Kang HJ, Voleti B, Hajszan T, Rajkowska G, Stockmeier C, Licznerski P, et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nat Med. 2012;18:1413–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Serretti A. The pharmacological management of treatment-resistant depression: what does the future hold? Expert Opin Pharmacother. 2023;24:1923–5.

    Article  PubMed  Google Scholar 

  10. Li N, Lee B, Liu R-J, Banasr M, Dwyer JM, Iwata M, et al. mTOR-Dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329:959–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Samuels BA, Leonardo ED, Gadient R, Williams A, Zhou J, David DJ, et al. MODELING TREATMENT-RESISTANT DEPRESSION. Neuropharmacology. 2011;61:408–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Howes O, Marcinkowska J, Turkheimer FE, Carr R Synaptic changes in psychiatric and neurological disorders: state-of-the art of in vivo imaging. Neuropsychopharmacol. 2024;50:164–83.

  13. Rossi R, Arjmand S, Bærentzen SL, Gjedde A, Landau AM. Synaptic vesicle glycoprotein 2A: features and functions. Front Neurosci. 2022;16:864514.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Mendoza-Torreblanca JG, Vanoye-Carlo A, Phillips-Farfán BV, Carmona-Aparicio L, Gómez-Lira G. Synaptic vesicle protein 2A: basic facts and role in synaptic function. Eur J Neurosci. 2013;38:3529–39.

    Article  PubMed  Google Scholar 

  15. Finnema SJ, Nabulsi NB, Eid T, Detyniecki K, Lin S, Chen M-K, et al. Imaging synaptic density in the living human brain. Sci Transl Med. 2016;8:348ra96–348ra96.

    Article  PubMed  Google Scholar 

  16. Shanaki Bavarsad M, Spina S, Oehler A, Allen IE, Suemoto CK, Leite REP, et al. Comprehensive mapping of synaptic vesicle protein 2A (SV2A) in health and neurodegenerative diseases: a comparative analysis with synaptophysin and ground truth for PET-imaging interpretation. Acta Neuropathol. 2024;148:58.

    Article  PubMed  CAS  Google Scholar 

  17. Heurling K, Ashton NJ, Leuzy A, Zimmer ER, Blennow K, Zetterberg H, et al. Synaptic vesicle protein 2A as a potential biomarker in synaptopathies. Mol Cell Neurosci. 2019;97:34–42.

    Article  PubMed  CAS  Google Scholar 

  18. Becker G, Dammicco S, Bahri MA, Salmon E. The rise of synaptic density PET imaging. Molecules. 2020;25:2303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Holmes SE, Scheinost D, Finnema SJ, Naganawa M, Davis MT, DellaGioia N, et al. Lower synaptic density is associated with depression severity and network alterations. Nat Commun. 2019;10:1529.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Holmes SE, Finnema SJ, Naganawa M, DellaGioia N, Holden D, Fowles K, et al. Imaging the effect of ketamine on synaptic density (SV2A) in the living brain. Mol Psychiatry. 2022;27:2273–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. von Mücke-Heim I-A, Urbina-Treviño L, Bordes J, Ries C, Schmidt MV, Deussing JM. Introducing a depression-like syndrome for translational neuropsychiatry: a plea for taxonomical validity and improved comparability between humans and mice. Mol Psychiatry. 2023;28:329–40.

    Article  Google Scholar 

  22. Agasse F, Mendez-David I, Christaller W, Carpentier R, Braz BY, David DJ, et al. Chronic corticosterone elevation suppresses adult hippocampal neurogenesis by hyperphosphorylating huntingtin. Cell Rep. 2020;32:107865.

    Article  PubMed  CAS  Google Scholar 

  23. Nomoto K, Kansaku K. Chronic corticosterone deteriorates latrine and nesting behaviours in mice. R Soc Open Sci. 2023;10:220718.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Wang H, Wang X, Wang H, Shao S, Zhu J. Chronic corticosterone administration-induced mood disorders in laboratory rodents: features, mechanisms, and research perspectives. Int J Mol Sci. 2024;25:11245.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. David DJ, Samuels BA, Rainer Q, Wang J-W, Marsteller D, Mendez I, et al. Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron. 2009;62:479–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hodes GE, Hill-Smith TE, Lucki I. Fluoxetine treatment induces dose dependent alterations in depression associated behavior and neural plasticity in female mice. Neurosci Lett. 2010;484:12–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Corvo C, Mendez-David I, Goutal S, Saba W, Bottlaender M, Caillé F, et al. Synaptic vesicle 2A (SV2A) positron emission tomography (PET) imaging as a marker of therapeutic response in a mouse model of depression. ACS Pharmacol Transl Sci. 2025;8:339–45.

  28. Xu S, Yao X, Li B, Cui R, Zhu C, Wang Y, et al. Uncovering the underlying mechanisms of ketamine as a novel antidepressant. Front Pharmacol. 2021;12:740996.

    Article  PubMed  CAS  Google Scholar 

  29. Mendez-David I, Guilloux J-P, Papp M, Tritschler L, Mocaer E, Gardier AM, et al. S 47445 produces antidepressant- and anxiolytic-like effects through neurogenesis dependent and independent mechanisms. Front Pharmacol. 2017;8:462.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moy SS, Nadler JJ, Perez A, Barbaro RP, Johns JM, Magnuson TR, et al. Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice. Genes Brain Behav. 2004;3:287–302.

    Article  PubMed  CAS  Google Scholar 

  31. Milicevic Sephton S, Miklovicz T, Russell JJ, Doke A, Li L, Boros I, et al. Automated radiosynthesis of [11C]UCB‐J for imaging synaptic density by positron emission tomography. J Labelled Comp Radiopharm. 2020;63:151–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Innis RB, Cunningham VJ, Delforge J, Fujita M, Gjedde A, Gunn RN, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. 2007;27:1533–9.

    Article  PubMed  CAS  Google Scholar 

  33. Bertoglio D, Verhaeghe J, Miranda A, Kertesz I, Cybulska K, Korat Š, et al. Validation and noninvasive kinetic modeling of [11C]UCB-J PET imaging in mice. J Cereb Blood Flow Metab. 2020;40:1351–62.

    Article  PubMed  CAS  Google Scholar 

  34. Logan J, Fowler JS, Volkow ND, Wolf AP, Dewey SL, Schlyer DJ, et al. Graphical analysis of reversible radioligand binding from time—activity measurements applied to [N-11C-Methyl]-(−)-Cocaine PET studies in human subjects. J Cereb Blood Flow Metab. 1990;10:740–7.

    Article  PubMed  CAS  Google Scholar 

  35. Ma S, Chen M, Jiang Y, Xiang X, Wang S, Wu Z, et al. Sustained antidepressant effect of ketamine through NMDAR trapping in the LHb. Nature. 2023;622:802–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gencturk S, Unal G. Rodent tests of depression and anxiety: Construct validity and translational relevance. Cogn Affect Behav Neurosci. 2024;24:191–224.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Yoshioka T, Yamada D, Hagiwara A, Kajino K, Iio K, Saitoh T, et al. Delta opioid receptor agonists activate PI3K–mTORC1 signaling in parvalbumin-positive interneurons in mouse infralimbic prefrontal cortex to exert acute antidepressant-like effects. Mol Psychiatry. 2025;30:2038–48.

    Article  PubMed  CAS  Google Scholar 

  38. Kumar A, Scarpa M, Nordberg A. Tracing synaptic loss in Alzheimer’s brain with SV2A PET‐tracer UCB‐J. Alzheimers Dement. 2024;20:2589–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Liston C, Miller MM, Goldwater DS, Radley JJ, Rocher AB, Hof PR, et al. Stress-induced alterations in prefrontal cortical dendritic morphology predict selective impairments in perceptual attentional set-shifting. J Neurosci. 2006;26:7870–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Popoli M, Yan Z, McEwen B, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci. 2011;13:22–37.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012;62:63–77.

    Article  PubMed  CAS  Google Scholar 

  42. Asch RH, Abdallah CG, Carson RE, Esterlis I. Challenges and rewards of in vivo synaptic density imaging, and its application to the study of depression. Neuropsychopharmacology. 2024;50:153–63.

    Article  PubMed  Google Scholar 

  43. Hasler G, Northoff G. Discovering imaging endophenotypes for major depression. Mol Psychiatry. 2011;16:604–19.

    Article  PubMed  CAS  Google Scholar 

  44. Wang C, Lan X, Liu W, Zhan Y, Zheng W, Chen X, et al. Non-improvement predicts subsequent non-response to repeated-dose intravenous ketamine for depression: a re-analysis of a 2-week open-label study in patients with unipolar and bipolar depression. Transl Psychiatry. 2024;14:324.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fraga DB, Camargo A, Olescowicz G, Padilha DA, Mina F, Budni J, et al. Ketamine, but not fluoxetine, rapidly rescues corticosterone-induced impairments on glucocorticoid receptor and dendritic branching in the hippocampus of mice. Metab Brain Dis. 2021;36:2223–33.

    Article  PubMed  CAS  Google Scholar 

  46. Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng P, et al. NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature. 2011;475:91–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Lisek M, Ferenc B, Studzian M, Pulaski L, Guo F, Zylinska L, et al. Glutamate deregulation in ketamine-induced psychosis—a potential role of PSD95, NMDA receptor and PMCA interaction. Front Cell Neurosci. 2017;11:181.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Yoo K-S, Lee K, Oh J-Y, Lee H, Park H, Park YS, et al. Postsynaptic density protein 95 (PSD-95) is transported by KIF5 to dendritic regions. Mol Brain. 2019;12:97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Zhang Y, Wei C-K, Wang P, Zheng L-C, Cheng Y, Ren Z-H, et al. S-ketamine alleviates depression-like behavior and hippocampal neuroplasticity in the offspring of mice that experience prenatal stress. Sci Rep. 2024;14:26929.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Huang B, Li X, Zheng Y, Mai Y, Zhang Z. Effects of esketamine on depression-like behavior and dendritic spine plasticity in the prefrontal cortex neurons of spared nerve injury-induced depressed mice. Braz J Med Biol Res. 2024;57:e13736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Moda-Sava RN, Murdock MH, Parekh PK, Fetcho RN, Huang BS, Huynh TN, et al. Sustained rescue of prefrontal circuit dysfunction by antidepressant-induced spine formation. Science. 2019;364:eaat8078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Wenzel M, Leunig A, Han S, Peterka DS, Yuste R. Prolonged anesthesia alters brain synaptic architecture. Proc Natl Acad Sci. 2021;118:e2023676118.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Johansen A, Armand S, Plavén-Sigray P, Nasser A, Ozenne B, Petersen IN, et al. Effects of escitalopram on synaptic density in the healthy human brain: a randomized controlled trial. Mol Psychiatry. 2023;28:4272–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Rayan NA, Kumar V, Aow J, Rastegar N, Lim MGL, O’Toole N, et al. Integrative multi-omics landscape of fluoxetine action across 27 brain regions reveals global increase in energy metabolism and region-specific chromatin remodelling. Mol Psychiatry. 2022;27:4510–25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Page CE, Epperson CN, Novick AM, Duffy KA, Thompson SM. Beyond the serotonin deficit hypothesis: communicating a neuroplasticity framework of major depressive disorder. Mol Psychiatry. 2024;29:3802–13.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Maud Goislard and Sophie Amargier-Barrial for their technical support during the preclinical study. We also thank Stephane Demphel and Françoise Hinnen for producing 11C-UCB-J. This work is funded by the French National Agency for Research (Grant ANR-22-CE17-0015) and was performed on a platform member of the France Life Imaging network (grant ANR-11-INBS-0006).

Author information

Authors and Affiliations

Authors

Contributions

RC, CL, DJD, and NT obtained funding and resources to conduct the study. CC, CL, DJD, IMD, SG, and NT conceived and planned the study. CC and IMD have developed and applied the model and behavioral assessments. FC has developed and supervised the synthesis of 11C-UCB-J. CC, SG, and SL conducted the PET imaging experiments and analyzed the data. The results were interpreted by FC, WS, SG, NT, CL, EC, VL, MB, RC, DJD, and IMD. CC and NT wrote the manuscript and made the figures. All authors revised and approved the manuscript.

Corresponding author

Correspondence to Nicolas Tournier.

Ethics declarations

Competing interests

These authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corvo, C., Goutal, S., Mendez-David, I. et al. Quantitative monitoring of ketamine’s impact on synaptic density using 11C-UCB-J PET imaging in the corticosterone mouse model of anxiety/depression. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03369-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-025-03369-3

Search

Quick links