Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gut microbiota modulates synaptic plasticity, connectivity, and dopamine transmission in the VTA-mPFC pathway in bipolar depression

Abstract

Adequate evidence has shown that gut microbial dysbiosis is an emerging disease phenotype of bipolar disorder (BD), and is closely related to clinical symptoms of this intractable disease. However, how gut microbiota affects the nervous system in BD remains largely unclear. In this study, we constructed a BD depression-like mouse model via fecal microbiota transplantation, and explored the changes of synaptic plasticity and connectivity in the medial prefrontal cortex (mPFC) of BD mice. We found that bipolar depression-like mice presented with a decrease in the density of dendritic spines in medial prefrontal neurons, and “Translation at postsynapse” as a key contributor to the changes in synaptic plasticity. In addition, analysis of synaptic connectivity in the mPFC revealed that compared to control mice, less connections were observed between ventral tegmental area and mPFC glutamate neurons and dopamine response was decreased in BD mice. These findings suggest that gut microbiota from BD depression patients induces the development of bipolar depression possibly by modulating aberrant synaptic connectivity and dopamine transmission in the VTA-mPFC pathway, which sheds light on the microbiota-gut-brain mechanisms underlying BD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Colonization of gut microbiota from BD patients changes behavior and humanization of the microbiota in mice.
Fig. 2: Transcriptomic and dendritic spines changes in mPFC underlie BD-depression like behavior.
Fig. 3: Reduced dopamine space connections to mPFC neurons.
Fig. 4: Monosynaptic connections to BLA-projection mPFC neurons.
Fig. 5: Structural and functional dopamine deficiency of mPFC-projection VTA dopaminergic neurons.

Similar content being viewed by others

Data availability

All relevant data supporting the key findings of this study are available within the article and its Supplementary files.

References

  1. Anderson IM, Haddad PM, Scott J. Bipolar disorder. BMJ. 2012;345:e8508.

    Article  PubMed  Google Scholar 

  2. Merikangas KR, Jin R, He JP, Kessler RC, Lee S, Sampson NA, et al. Prevalence and correlates of bipolar spectrum disorder in the world mental health survey initiative. Arch Gen Psychiatry. 2011;68:241–51.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nierenberg AA, Agustini B, Kohler-Forsberg O, Cusin C, Katz D, Sylvia LG, et al. Diagnosis and treatment of bipolar disorder: a review. JAMA. 2023;330:1370–80.

    Article  CAS  PubMed  Google Scholar 

  4. Harrison PJ, Geddes JR, Tunbridge EM. The emerging neurobiology of bipolar disorder. Trends in Neurosciences. 2018;41:18–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Domenech P, Rheims S, Koechlin E. Neural mechanisms resolving exploitation-exploration dilemmas in the medial prefrontal cortex. Science. 2020;369:eabb0184.

    Article  CAS  PubMed  Google Scholar 

  6. Etkin A, Egner T, Kalisch R. Emotional processing in anterior cingulate and medial prefrontal cortex. Trends Cogn Sci. 2011;15:85–93.

    Article  PubMed  Google Scholar 

  7. Savitz JB, Price JL, Drevets WC. Neuropathological and neuromorphometric abnormalities in bipolar disorder: view from the medial prefrontal cortical network. Neurosci Biobehav Rev. 2014;42:132–47.

    Article  CAS  PubMed  Google Scholar 

  8. Nikolova VL, Hall MRB, Hall LJ, Cleare AJ, Stone JM, Young AH. Perturbations in gut microbiota composition in psychiatric disorders: a review and meta-analysis. JAMA Psychiatry. 2021;78:1343–54.

    Article  PubMed  Google Scholar 

  9. Rieder R, Wisniewski PJ, Alderman BL, Campbell SC. Microbes and mental health: A review. Brain Behav Immun. 2017;66:9–17.

    Article  CAS  PubMed  Google Scholar 

  10. Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35–56.

    Article  CAS  PubMed  Google Scholar 

  11. Vinberg M, Ottesen NM, Meluken I, Sorensen N, Pedersen O, Kessing LV, et al. Remitted affective disorders and high familial risk of affective disorders associate with aberrant intestinal microbiota. Acta Psychiatr Scand. 2019;139:174–84.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao M, Ren Z, Zhao A, Tang Y, Kuang J, Li M, et al. Gut bacteria-driven homovanillic acid alleviates depression by modulating synaptic integrity. Cell Metab. 2024;36:1000–12 e6.

    Article  CAS  PubMed  Google Scholar 

  13. Shi H, Ge X, Ma X, Zheng M, Cui X, Pan W, et al. A fiber-deprived diet causes cognitive impairment and hippocampal microglia-mediated synaptic loss through the gut microbiota and metabolites. Microbiome. 2021;9:223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Diaz Heijtz R, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, et al. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA. 2011;108:3047–52.

    Article  PubMed  Google Scholar 

  15. Lai J, Zhang P, Jiang J, Mou T, Li Y, Xi C, et al. New evidence of gut microbiota involvement in the neuropathogenesis of bipolar depression by TRANK1 modulation: joint clinical and animal data. Front Immunol. 2021;12:789647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Z, Lai J, Zhang P, Ding J, Jiang J, Liu C, et al. Multi-omics analyses of serum metabolome, gut microbiome and brain function reveal dysregulated microbiota-gut-brain axis in bipolar depression. Mol Psychiatry, 2022;27:4123–35.

  17. Malhi GS, Bell E, Bassett D, Boyce P, Bryant R, Hazell P, et al. The 2020 Royal Australian and New Zealand College of Psychiatrists clinical practice guidelines for mood disorders. Aust N Z J Psychiatry. 2021;55:7–117.

    Article  PubMed  Google Scholar 

  18. Jha MK, Mathew SJ. Pharmacotherapies for treatment-resistant depression: how antipsychotics fit in the rapidly evolving therapeutic landscape. Am J Psychiatry. 2023;180:190–9.

    Article  PubMed  Google Scholar 

  19. Chen Y, Li Y, Fan Y, Chen S, Chen L, Chen Y, et al. Gut microbiota-driven metabolic alterations reveal gut–brain communication in Alzheimer’s disease model mice. Gut Microbes. 2024;16:2302310.

    Article  PubMed  PubMed Central  Google Scholar 

  20. McIntyre RS, Subramaniapillai M, Shekotikhina M, Carmona NE, Lee Y, Mansur RB, et al. Characterizing the gut microbiota in adults with bipolar disorder: a pilot study. Nutr Neurosci. 2021;24:173–80.

    Article  PubMed  Google Scholar 

  21. Li D, Sun T, Tong Y, Le J, Yao Q, Tao J, et al. Gut-microbiome-expressed 3β-hydroxysteroid dehydrogenase degrades estradiol and is linked to depression in premenopausal females. Cell Metabolism. 2023;35:685–.e5.

    Article  CAS  PubMed  Google Scholar 

  22. Marizzoni M, Mirabelli P, Mombelli E, Coppola L, Festari C, Lopizzo N, et al. A peripheral signature of Alzheimer’s disease featuring microbiota-gut-brain axis markers. Alzheimer’s Research & Therapy. 2023;15:101.

    Article  CAS  Google Scholar 

  23. Liśkiewicz P, Kaczmarczyk M, Misiak B, Wroński M, Bąba-Kubiś A, Skonieczna-Żydecka K, et al. Analysis of gut microbiota and intestinal integrity markers of inpatients with major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 2021;106:110076.

    Article  PubMed  Google Scholar 

  24. Radjabzadeh D, Bosch JA, Uitterlinden AG, Zwinderman AH, Ikram MA, van Meurs JBJ, et al. Gut microbiome-wide association study of depressive symptoms. Nature Communications. 2022;13:7128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hepple RT, Rice CL. Innervation and neuromuscular control in ageing skeletal muscle. Journal of Physiology-London. 2016;594:1965–78.

    Article  CAS  Google Scholar 

  26. Nakamura Y, Okada N, Koshiyama D, Kamiya K, Abe O, Kunimatsu A, et al. Differences in functional connectivity networks related to the midbrain dopaminergic system-related area in various psychiatric disorders. Schizophr Bull. 2020;46:1239–48.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Nakahata Y, Yasuda R. Plasticity of spine structure: local signaling, translation and cytoskeletal reorganization. Frontiers in Synaptic Neuroscience. 2018;10:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martínez O, Monserrat J, Martinez-Rozas L, et al. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Molecular Psychiatry. 2023;28:2645–73.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Gielow MR, Zaborszky L. The input-output relationship of the cholinergic basal forebrain. Cell Reports. 2017;18:1817–30.

    Article  CAS  PubMed  Google Scholar 

  30. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, et al. Circuit architecture of VTA dopamine neurons revealed by systematic input-output mapping. Cell. 2015;162:622–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M. Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Reports. 2014;8:1105–18.

    Article  CAS  PubMed  Google Scholar 

  32. Schwarz LA, Luo LQ. Organization of the locus coeruleus-norepinephrine system. Current Biology. 2015;25:R1051–R1056.

    Article  CAS  PubMed  Google Scholar 

  33. Redlich R, Dohm K, Grotegerd D, Opel N, Zwitserlood P, Heindel W, et al. Reward processing in unipolar and bipolar depression: a functional MRI study. Neuropsychopharmacology. 2015;40:2623–31.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Sidor MM, Spencer SM, Dzirasa K, Parekh PK, Tye KM, Warden MR, et al. Daytime spikes in dopaminergic activity drive rapid mood-cycling in mice. Mol Psychiatry. 2015;20:1406–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Fan Q, Hou Y, Zhang X, Yin Z, Cai X, et al. Bacteroides species differentially modulate depression-like behavior via gut-brain metabolic signaling. Brain Behav Immun. 2022;102:11–22.

    Article  CAS  PubMed  Google Scholar 

  36. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry. 2016;21:786–96.

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y, Wang H, Gui S, Zeng B, Pu J, Zheng P, et al. Proteomics analysis of the gut-brain axis in a gut microbiota-dysbiosis model of depression. Transl Psychiatry. 2021;11:568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fang Y, Chen B, Liu Z, Gong AY, Gunning WT, Ge Y, et al. Age-related GSK3β overexpression drives podocyte senescence and glomerular aging. J Clin Invest. 2022;132:e141848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Washizuka S, Ikeda A, Kato N, Kato T. Possible relationship between mitochondrial DNA polymorphisms and lithium response in bipolar disorder. Int J Neuropsychopharmacol. 2003;6:421–4.

    Article  CAS  PubMed  Google Scholar 

  40. Mohamadian M, Fallah H, Ghofrani-Jahromi Z, Rahimi-Danesh M, Shokouhi Qare Saadlou MS, Vaseghi S. Mood and behavior regulation: interaction of lithium and dopaminergic system. Naunyn Schmiedebergs Arch Pharmacol. 2023;396:1339–59.

    Article  CAS  PubMed  Google Scholar 

  41. Arey RN, Enwright JF III, Spencer SM, Falcon E, Ozburn AR, et al. An important role for cholecystokinin, a CLOCK target gene, in the development and treatment of manic-like behaviors. Mol Psychiatry. 2014;19:342–50.

    Article  CAS  PubMed  Google Scholar 

  42. Coque L, Mukherjee S, Cao JL, Spencer S, Marvin M, Falcon E, et al. Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockΔ19 mouse model of mania. Neuropsychopharmacology. 2011;36:1478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lam RW, Kennedy SH, Adams C, Bahji A, Beaulieu S, Bhat V, et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2023 Update on Clinical Guidelines for Management of Major Depressive Disorder in Adults: Réseau canadien pour les traitements de l’humeur et de l’anxiété (CANMAT) 2023 : Mise à jour des lignes directrices cliniques pour la prise en charge du trouble dépressif majeur chez les adultes. Can J Psychiatry. 2024;69:641–87.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The genus alistipes: gut bacteria with emerging implications to inflammation, cancer, and mental health. Front Immunol. 2020;11:906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Edwinson AL, Yang L, Peters S, Hanning N, Jeraldo P, Jagtap P, et al. Gut microbial beta-glucuronidases regulate host luminal proteases and are depleted in irritable bowel syndrome. Nat Microbiol. 2022;7:680–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lu Y, Cui A, Zhang X. Commensal microbiota-derived metabolite agmatine triggers inflammation to promote colorectal tumorigenesis. Gut Microbes. 2024;16:2348441.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bangsgaard Bendtsen KM, Krych L, Sorensen DB, Pang W, Nielsen DS, Josefsen K, et al. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS One. 2012;7:e46231.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Jiang H, Ling Z, Zhang Y, Mao H, Ma Z, Yin Y, et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain Behav Immun. 2015;48:186–94.

    Article  PubMed  Google Scholar 

  49. Zhuge A, Li S, Lou P, Wu W, Wang K, Yuan Y, et al. Longitudinal 16S rRNA sequencing reveals relationships among alterations of gut microbiota and nonalcoholic fatty liver disease progression in mice. Microbiol Spectr. 2022;10:e0004722.

    Article  PubMed  Google Scholar 

  50. Ren F, Jin Q, Jin Q, Qian Y, Ren X, Liu T, et al. Genetic evidence supporting the causal role of gut microbiota in chronic kidney disease and chronic systemic inflammation in CKD: a bilateral two-sample Mendelian randomization study. Front Immunol. 2023;14:1287698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Misiak B, Pawlak E, Rembacz K, Kotas M, Zebrowska-Rozanska P, Kujawa D, et al. Associations of gut microbiota alterations with clinical, metabolic, and immune-inflammatory characteristics of chronic schizophrenia. J Psychiatr Res. 2024;171:152–60.

    Article  PubMed  Google Scholar 

  52. Jang KK, Heaney T, London M, Ding Y, Putzel G, Yeung F, et al. Antimicrobial overproduction sustains intestinal inflammation by inhibiting Enterococcus colonization. Cell Host Microbe. 2023;31:1450–.e8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Guo Y, Kitamoto S, Caballero-Flores G, Kim Y, Watanabe D, Sugihara K, et al. Oral pathobiont Klebsiella chaperon usher pili provide site-specific adaptation for the inflamed gut mucosa. Gut Microbes. 2024;16:2333463.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Pujo J, Petitfils C, Le Faouder P, Eeckhaut V, Payros G, Maurel S, et al. Bacteria-derived long chain fatty acid exhibits anti-inflammatory properties in colitis. Gut. 2021;70:1088–97.

    Article  CAS  PubMed  Google Scholar 

  55. Morais LH, Schreiber HLT, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders. Nat Rev Microbiol. 2021;19:241–55.

    Article  CAS  PubMed  Google Scholar 

  56. Li D, Liu R, Wang M, Peng R, Fu S, Fu A, et al. 3beta-Hydroxysteroid dehydrogenase expressed by gut microbes degrades testosterone and is linked to depression in males. Cell Host Microbe. 2022;30:329–39 e5.

    Article  PubMed  Google Scholar 

  57. Pignatelli M, Bonci A. Spiraling connectivity of NAc-VTA circuitry. Neuron. 2018;97:261–2.

    Article  CAS  PubMed  Google Scholar 

  58. Mukherjee S, Coque L, Cao JL, Kumar J, Chakravarty S, Asaithamby A, et al. Knockdown of clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol Psychiatry. 2010;68:503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Coque L, Mukherjee S, Cao JL, Spencer S, Marvin M, Falcon E, et al. Specific role of VTA dopamine neuronal firing rates and morphology in the reversal of anxiety-related, but not depression-related behavior in the ClockDelta19 mouse model of mania. Neuropsychopharmacology. 2011;36:1478–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bloodgood DW, Sugam JA, Holmes A, Kash TL. Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry. 2018;8:60.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun. 2020;11:2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lieberman MD, Eisenberger NI, Crockett MJ, Tom SM, Pfeifer JH, Way BM. Putting feelings into words: affect labeling disrupts amygdala activity in response to affective stimuli. Psychol Sci. 2007;18:421–8.

    Article  PubMed  Google Scholar 

  63. Colich NL, Hanford LC, Weissman DG, Allen NB, Shirtcliff EA, Lengua LJ, et al. Childhood trauma, earlier pubertal timing, and psychopathology in adolescence: the role of corticolimbic development. Dev Cogn Neurosci. 2023;59:101187.

    Article  PubMed  Google Scholar 

  64. Liu H, Tang Y, Womer F, Fan G, Lu T, Driesen N, et al. Differentiating patterns of amygdala-frontal functional connectivity in schizophrenia and bipolar disorder. Schizophr Bull. 2014;40:469–77.

    Article  PubMed  Google Scholar 

  65. Perlman SB, Almeida JRC, Kronhaus DM, Versace A, LaBarbara EJ, Klein CR, et al. Amygdala activity and prefrontal cortex–amygdala effective connectivity to emerging emotional faces distinguish remitted and depressed mood states in bipolar disorder. Bipolar Disorders. 2012;14:162–74.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Kataoka N, Shima Y, Nakajima K, Nakamura K. A central master driver of psychosocial stress responses in the rat. Science. 2020;367:1105–12.

    Article  CAS  PubMed  Google Scholar 

  67. Yu X, Ba W, Zhao G, Ma Y, Harding EC, Yin L, et al. Dysfunction of ventral tegmental area GABA neurons causes mania-like behavior. Mol Psychiatry. 2021;26:5213–28.

    Article  CAS  PubMed  Google Scholar 

  68. Huang L, Chen Y, Jin S, Lin L, Duan S, Si K, et al. Organizational principles of amygdalar input-output neuronal circuits. Mol Psychiatry, 2021;26:7118–29.

  69. Reardon TR, Murray AJ, Turi GF, Wirblich C, Croce KR, Schnell MJ, et al. Rabies Virus CVS-N2c(ΔG) Strain Enhances Retrograde Synaptic Transfer and Neuronal Viability. Neuron. 2016;89:711–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang T, Hao L, Yang K, Feng W, Guo Z, Liu M, et al. Fecal microbiota transplantation derived from mild cognitive impairment individuals impairs cerebral glucose uptake and cognitive function in wild-type mice: Bacteroidetes and TXNIP-GLUT signaling pathway. Gut Microbes. 2024;16:2395907.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Zhu F, Ju Y, Wang W, Wang Q, Guo R, Ma Q, et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat Commun. 2020;11:1612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Key Research and Development Program of China (2023YFC2506200), STI 2030-Major Projects (2021ZD0200401), the National Natural Science Foundation of China (82571735,82471542,82201676), Key R&D Program of Zhejiang Province (2023C03077, 2024C03150, 2025C01119, 2024C03098, 2025C02109), the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Contributions

SH Hu, W.Gong, JB Lai, K Si were responsible for the overall experimental design. YW Chen performed mice experiments, Stereotaxic injections, Tissue processing, Image acquisition and data analysis. AY Tang performed the mice experiments, fecal sample collect and mice behavior test data analysis. All the authors discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Ke Si, Jianbo Lai, Wei Gong or Shaohua Hu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, A., Chen, Y., Si, K. et al. Gut microbiota modulates synaptic plasticity, connectivity, and dopamine transmission in the VTA-mPFC pathway in bipolar depression. Mol Psychiatry (2025). https://doi.org/10.1038/s41380-025-03398-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-025-03398-y

Search

Quick links