Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Systematic Review
  • Published:

Comparative efficacy and safety of different surgical strategies for refractory obsessive-compulsive disorder: evidence from network meta-analysis

Abstract

Objective

To conduct a network meta-analysis to compare the efficacy and safety of various surgical strategies for refractory obsessive-compulsive disorder (OCD), including ablative surgery (ABL) and deep brain stimulation (DBS), with the aim to guide clinical treatment.

Methods

We searched major electronic databases for different surgical interventions of OCD. The primary outcomes were changes in the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) at 1 year and at the longest follow-up (LFU); the secondary outcomes included responder rates of Y-BOCS (≥35% reduction) and changes in global function, depression, and anxiety; and the safety outcomes included surgery-related adverse events (SRAEs) and serious adverse events (SAEs).

Results

A total of 75 studies involving 1259 patients and 20 surgical strategies were enrolled. Most interventions resulted in significant improvements in Y-BOCS scores, with a reduction of around 10–15 points. Among them, radiofrequency capsulotomy (RF-Cap, mean difference [MD]: 17.251 at 1 year; MD: 17.458 at LFU) and inferior thalamic peduncle DBS (ITP-DBS, MD: 18.126 at 1 year; MD: 20.209 at LFU) were associated with the greatest improvements. Subthalamic nucleus + ventral capsule/ventral striatum DBS (STN + VC/VS-DBS) also exhibited good efficacy at the LFU (MD: 20.780), although data were lacking at 1 year. In terms of safety, ABL was associated with a higher rate of SRAEs than DBS (26 VS. 22%, p = 0.0325), with mechanical-Cap exhibiting the highest SRAE rate (47.5%). However, both DBS and ABL showed good acceptability, with no significant difference in SAEs.

Conclusion

Based on the current analysis, RF-Cap and ITP-DBS were associated with the largest improvements; however, the evidence for ITP-DBS is based on a small sample size, and should therefore be interpreted with caution. More head-to-head studies are needed to directly compare different surgical techniques and identify individual treatment options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The study search, selection, and inclusion process.
Fig. 2: Schematic representations of various surgical strategies for refractory obsessive-compulsive disorder (OCD), including deep brain stimulation (DBS, left part) and ablation (ABL, right part).
Fig. 3: Network plots and results of studies comparing different surgical strategies for refractory obsessive-compulsive disorder (OCD) on primary outcomes.
Fig. 4: League tables of different surgical strategies for refractory obsessive-compulsive disorder (OCD) on primary outcomes.
Fig. 5: Summary of network meta-analysis (NMA) results of different surgical strategies for refractory obsessive-compulsive disorder (OCD) on continuous outcomes and single-arm meta-analysis (SAM) results on dichotomous outcomes.

Similar content being viewed by others

Data availability

The dataset and code used for the present work will be available from the authors upon reasonable request.

References

  1. Kumar KK, Appelboom G, Lamsam L, Caplan AL, Williams NR, Bhati MT, et al. Comparative effectiveness of neuroablation and deep brain stimulation for treatment-resistant obsessive-compulsive disorder: a meta-analytic study. J Neurol Neurosurg Psychiatry. 2019;90:469–73. https://doi.org/10.1136/jnnp-2018-319318.

    Article  PubMed  Google Scholar 

  2. Raviv N, Staudt MD, Rock AK, MacDonell J, Slyer J, Pilitsis JG. A systematic review of deep brain stimulation targets for obsessive compulsive disorder. Neurosurgery. 2020;87:1098–110. https://doi.org/10.1093/neuros/nyaa249.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stein DJ, Costa DLC, Lochner C, Miguel EC, Reddy YCJ, Shavitt RG, et al. Obsessive-compulsive disorder. Nat Rev Dis Primers. 2019;5:52. https://doi.org/10.1038/s41572-019-0102-3.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bergfeld IO, Dijkstra E, Graat I, de Koning P, van den Boom BJG, Arbab T, et al. Invasive and non-invasive neurostimulation for OCD. Curr Top Behav Neurosci. 2021;49:399–436. https://doi.org/10.1007/7854_2020_206.

    Article  PubMed  Google Scholar 

  5. Farrand S, Evans AH, Mangelsdorf S, Loi SM, Mocellin R, Borham A, et al. Deep brain stimulation for severe treatment-resistant obsessive-compulsive disorder: an open-label case series. Aust N Z J Psychiatry. 2018;52:699–708. https://doi.org/10.1177/0004867417731819.

    Article  PubMed  Google Scholar 

  6. Robbins TW, Vaghi MM, Banca P. Obsessive-Compulsive disorder: puzzles and prospects. Neuron. 2019;102:27–47. https://doi.org/10.1016/j.neuron.2019.01.046.

    Article  PubMed  Google Scholar 

  7. Tastevin M, Spatola G, Régis J, Lançon C, Richieri R. Deep brain stimulation in the treatment of obsessive-compulsive disorder: current perspectives. Neuropsychiatr Dis Treat. 2019;15:1259–72. https://doi.org/10.2147/NDT.S178207.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Dyster TG, Mikell CB, Sheth SA. The Co-evolution of neuroimaging and psychiatric neurosurgery. Front Neuroanat. 2016;10:68. https://doi.org/10.3389/fnana.2016.00068.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Balachander S, Arumugham SS, Srinivas D. Ablative neurosurgery and deep brain stimulation for obsessive-compulsive disorder. Indian J Psychiatry. 2019;61:S77–84. https://doi.org/10.4103/psychiatry.IndianJPsychiatry_523_18.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Peker S, Samanci MY, Yilmaz M, Sengoz M, Ulku N, Ogel K. Efficacy and safety of gamma ventral capsulotomy for treatment-resistant obsessive-compulsive disorder: a single-center experience. World Neurosurg. 2020;141:e941–52. https://doi.org/10.1016/j.wneu.2020.06.098.

    Article  PubMed  Google Scholar 

  11. Davidson B, Hamani C, Rabin JS, Goubran M, Meng Y, Huang Y, et al. Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder and major depressive disorder: clinical and imaging results from two phase I trials. Mol Psychiatry. 2020;25:1946–57. https://doi.org/10.1038/s41380-020-0737-1.

    Article  PubMed  Google Scholar 

  12. Li N, Baldermann JC, Kibleur A, Treu S, Akram H, Elias GJB, et al. A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat Commun. 2020;11:3364. https://doi.org/10.1038/s41467-020-16734-3.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hageman SB, van Rooijen G, Bergfeld IO, Schirmbeck F, de Koning P, Schuurman PR, et al. Deep brain stimulation versus ablative surgery for treatment-refractory obsessive-compulsive disorder: a meta-analysis. Acta Psychiatr Scand. 2021;143:307–18. https://doi.org/10.1111/acps.13276.

    Article  PubMed  Google Scholar 

  14. Naci H, Salcher-Konrad M, Kesselheim AS, Wieseler B, Rochaix L, Redberg RF, et al. Generating comparative evidence on new drugs and devices before approval. Lancet. 2020;395:986–97. https://doi.org/10.1016/S0140-6736(19)33178-2.

    Article  PubMed  Google Scholar 

  15. Nikolakopoulou A, Mavridis D, Furukawa TA, Cipriani A, Tricco AC, Straus SE, et al. Living network meta-analysis compared with pairwise meta-analysis in comparative effectiveness research: empirical study. BMJ. 2018;360:k585. https://doi.org/10.1136/bmj.k585.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Higgins JPT, Welton NJ. Network meta-analysis: a norm for comparative effectiveness? Lancet. 2015;386:628–30. https://doi.org/10.1016/S0140-6736(15)61478-7.

    Article  PubMed  Google Scholar 

  17. Cruz S, Gutiérrez-Rojas L, González-Domenech P, Díaz-Atienza F, Martínez-Ortega JM, Jiménez-Fernández S. Deep brain stimulation in obsessive-compulsive disorder: Results from meta-analysis. Psychiatry Res. 2022;317:114869. https://doi.org/10.1016/j.psychres.2022.114869.

    Article  PubMed  Google Scholar 

  18. Nikolakopoulou A, Higgins JPT, Papakonstantinou T, Chaimani A, Del Giovane C, Egger M, et al. CINeMA: an approach for assessing confidence in the results of a network meta-analysis. PLoS Med. 2020;17:e1003082. https://doi.org/10.1371/journal.pmed.1003082.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336:924–6. https://doi.org/10.1136/bmj.39489.470347.AD.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Brignardello-Petersen R, Florez ID, Izcovich A, Santesso N, Hazlewood G, Alhazanni W, et al. GRADE approach to drawing conclusions from a network meta-analysis using a minimally contextualised framework. BMJ. 2020;371:m3900. https://doi.org/10.1136/bmj.m3900.

    Article  PubMed  Google Scholar 

  21. Jayaram M, Wood SM, Kane RL, Yang L-Y, Chung KC. Association of open reduction and internal fixation with volar locking plate for distal radius fractures with patient-reported outcomes in older adults: a network meta-analysis. JAMA Netw Open. 2023;6:e2318715. https://doi.org/10.1001/jamanetworkopen.2023.18715.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Papola D, Miguel C, Mazzaglia M, Franco P, Tedeschi F, Romero SA, et al. Psychotherapies for generalized anxiety disorder in adults: a systematic review and network meta-analysis of randomized clinical trials. JAMA Psychiatry. 2024;81:250–9. https://doi.org/10.1001/jamapsychiatry.2023.3971.

    Article  PubMed  Google Scholar 

  23. Rasmussen SA, Noren G, Greenberg BD, Marsland R, McLaughlin NC, Malloy PJ, et al. Gamma ventral capsulotomy in intractable obsessive-compulsive disorder. Biol Psychiatry. 2018;84:355–64. https://doi.org/10.1016/j.biopsych.2017.11.034.

    Article  PubMed  Google Scholar 

  24. Rück C, Karlsson A, Steele JD, Edman G, Meyerson BA, Ericson K, et al. Capsulotomy for obsessive-compulsive disorder: long-term follow-up of 25 patients. Arch Gen Psychiatry. 2008;65:914. https://doi.org/10.1001/archpsyc.65.8.914.

    Article  PubMed  Google Scholar 

  25. McLaughlin NCR, Lauro PM, Patrick MT, Pucci FG, Barrios-Anderson A, Greenberg BD, et al. Magnetic resonance imaging-guided laser thermal ventral capsulotomy for intractable obsessive-compulsive disorder. Neurosurgery. 2021;88:1128–35. https://doi.org/10.1093/neuros/nyab050.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang C, Kim S-G, Li J, Zhang Y, Lv Q, Zeljic K, et al. Anterior limb of the internal capsule tractography: relationship with capsulotomy outcomes in obsessive-compulsive disorder. J Neurol Neurosurg Psychiatry. 2021;92:637–44. https://doi.org/10.1136/jnnp-2020-323062.

    Article  PubMed  Google Scholar 

  27. Satzer D, Mahavadi A, Lacy M, Grant JE, Warnke P. Interstitial laser anterior capsulotomy for obsessive–compulsive disorder: lesion size and tractography correlate with outcome. J Neurol Neurosurg Psychiatry. 2022;93:317–23. https://doi.org/10.1136/jnnp-2021-327730.

    Article  PubMed  Google Scholar 

  28. Santos BFDO, Gorgulho A, Saraiva CWC, Lopes AC, Gomes JGR, Pássaro AM, et al. Understanding gamma ventral capsulotomy: potential implications of diffusion tensor image tractography on target selectivity. Surgical Neurol Int. 2019;10:136 https://doi.org/10.25259/SNI-65-2019.

    Article  Google Scholar 

  29. Liu K, Zhang H, Liu C, Guan Y, Lang L, Cheng Y, et al. Stereotactic treatment of refractory obsessive compulsive disorder by bilateral capsulotomy with 3 years follow-up. J Clin Neurosci. 2008;15:622–9. https://doi.org/10.1016/j.jocn.2007.07.086.

    Article  PubMed  Google Scholar 

  30. Gong F, Li P, Li B, Zhang S, Zhang X, Yang S, et al. A study of cognitive function in treatment-refractory obsessive-compulsive disorder treated with capsulotomy. J Neurosurg. 2018;128:583–95. https://doi.org/10.3171/2016.9.JNS152494.

    Article  PubMed  Google Scholar 

  31. Zhan S, Liu W, Li D, Pan S, Pan Y, Li Y, et al. Long-term follow-up of bilateral anterior capsulotomy in patients with refractory obsessive-compulsive disorder. Clin Neurol Neurosurg. 2014;119:91–5. https://doi.org/10.1016/j.clineuro.2014.01.009.

    Article  PubMed  Google Scholar 

  32. Gong F, Li B, Zhang S, Wang Y, Gao Y, Xu Y, et al. The suitability of different subtypes and dimensions of obsessive-compulsive disorder for treatment with anterior capsulotomy: a long-term follow-up study. Stereotact Funct Neurosurg. 2019;97:319–36. https://doi.org/10.1159/000500137.

    Article  PubMed  Google Scholar 

  33. Lai Y, Wang T, Zhang C, Lin G, Voon V, Chang J, et al. Effectiveness and safety of neuroablation for severe and treatment-resistant obsessive–compulsive disorder: a systematic review and meta-analysis. jpn. 2020;45:356–69. https://doi.org/10.1503/jpn.190079.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Schlaepfer TE, Bewernick BH, Kayser S, Hurlemann R, Coenen VA. Deep brain stimulation of the human reward system for major depression-rationale, outcomes and outlook. Neuropsychopharmacology. 2014;39:1303–14. https://doi.org/10.1038/npp.2014.28.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Baldermann JC, Melzer C, Zapf A, Kohl S, Timmermann L, Tittgemeyer M, et al. Connectivity profile predictive of effective deep brain stimulation in obsessive-compulsive disorder. Biol Psychiatry. 2019;85:735–43. https://doi.org/10.1016/j.biopsych.2018.12.019.

    Article  PubMed  Google Scholar 

  36. Lee DJ, Dallapiazza RF, De Vloo P, Elias GJB, Fomenko A, Boutet A, et al. Inferior thalamic peduncle deep brain stimulation for treatment-refractory obsessive-compulsive disorder: A phase 1 pilot trial. Brain Stimulation. 2019;12:344–52. https://doi.org/10.1016/j.brs.2018.11.012.

    Article  PubMed  Google Scholar 

  37. Lebow MA, Chen A. Overshadowed by the amygdala: the bed nucleus of the stria terminalis emerges as key to psychiatric disorders. Mol Psychiatry. 2016;21:450–63. https://doi.org/10.1038/mp.2016.1.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Suetens K, Nuttin B, Gabriëls L, Van Laere K. Differences in metabolic network modulation between capsulotomy and deep-brain stimulation for refractory obsessive-compulsive disorder. J Nucl Med. 2014;55:951–9. https://doi.org/10.2967/jnumed.113.126409.

    Article  PubMed  Google Scholar 

  39. Graat I, Mocking RJT, Liebrand LC, van den Munckhof P, Bot M, Schuurman PR, et al. Tractography-based versus anatomical landmark-based targeting in vALIC deep brain stimulation for refractory obsessive-compulsive disorder. Mol Psychiatry. 2022;27:5206–12. https://doi.org/10.1038/s41380-022-01760-y.

    Article  PubMed  Google Scholar 

  40. Meyer DM, Spanier S, Kilian HM, Reisert M, Urbach H, Sajonz BE, et al. Efficacy of superolateral medial forebrain bundle deep brain stimulation in obsessive-compulsive disorder. Brain Stimulation. 2022;15:582–5. https://doi.org/10.1016/j.brs.2022.03.004.

    Article  PubMed  Google Scholar 

  41. Voon V, Droux F, Morris L, Chabardes S, Bougerol T, David O, et al. Decisional impulsivity and the associative-limbic subthalamic nucleus in obsessive-compulsive disorder: stimulation and connectivity. Brain. 2017;140:442–56. https://doi.org/10.1093/brain/aww309.

    Article  PubMed  Google Scholar 

  42. Jiménez F, Nicolini H, Lozano AM, Piedimonte F, Salín R, Velasco F. Electrical stimulation of the inferior thalamic peduncle in the treatment of major depression and obsessive compulsive disorders. World Neurosurg. 2013;80:S30.e17–S30.e25. https://doi.org/10.1016/j.wneu.2012.07.010.

    Article  PubMed  Google Scholar 

  43. Welter M-L, Alves Dos Santos JF, Clair A-H, Lau B, Diallo HM, Fernandez-Vidal S, et al. Deep brain stimulation of the subthalamic, accumbens, or caudate nuclei for patients with severe obsessive-compulsive disorder: a randomized crossover controlled study. Biol Psychiatry. 2021;90:e45–7. https://doi.org/10.1016/j.biopsych.2020.07.013.

    Article  PubMed  Google Scholar 

Download references

Funding

This work is funded by the National Natural Science Foundation of China (82501753, 82171442 and 82171309).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and supervision: JGZ and ZW; Investigation and writing original draft: TX, YJQ, and XZL; Data curation: MJX and HTX, software and formal analysis: WW and ZQC; Methodology and visualization: YTB; Review and editing: JGZ and ZW; Validation: ACY and FGM. Resources and Funding Acquisition: ZW. All authors have read and approved the final manuscript.

Corresponding authors

Correspondence to Zhong Wang or Jianguo Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, T., Qiu, Y., Li, X. et al. Comparative efficacy and safety of different surgical strategies for refractory obsessive-compulsive disorder: evidence from network meta-analysis. Mol Psychiatry (2026). https://doi.org/10.1038/s41380-025-03438-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-025-03438-7

Search

Quick links