Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of neural derived extracellular vesicles micro-ribonucleic acid cargo in white matter integrity in early-onset and late-onset bipolar disorder

Abstract

Bipolar disorder (BD) shows different clinical manifestations according to illness onset (early vs late onset). Its etiology is multifaceted and no reliable biomarkers are available. However, clinical manifestations of BD may stem from disruption in white matter (WM) integrity within brain networks or selective epigenetic alterations, including plasma neural derived extracellular vesicles (NDEVs). In this context, this study further explores the existence of similar epigenetic expression patterns in NDVEs, such as micro-ribonucleic acid (miRNA), and seeks to correlate them with biological markers obtained through Diffusion Tensor Imaging and with clinical data. 23 early onset BD (35% males) (EOBD), 15 late-onset BD (47% males) (LOBD), and 18 healthy controls (44% males) (HC) were recruited. Fractional anisotropy (FA) was investigated through Tract-Based Spatial Statistics. NDEVs were isolated from plasma, and their miRNA content was profiled using real-time polymerase chain reaction. Compared to HC, miR-20a and miR-299-5p were upregulated in EOBD, while miR-323-3p expression was reduced in both EOBD and LOBD patients relative to HC. Moreover, compared to HC, EOBD and LOBD showed decreased FA in the left posterior thalamic radiation and the left anterior corona radiata, respectively. Finally, after Bonferroni correction, EOBD patients showed a negative correlation between miR-323-3p and FA in the left tapetum. Our results shed light on a possible interaction between miRNA expression and WM modifications in BD. However, further research is needed to better characterize the role of miRNA by FA interaction in BD pathophysiology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: EL differences in miR-20a, mi-R-299-5p and miR-323-3p among the three groups.
Fig. 2: FA differences in the six regions surviving Bonferroni correction.

Data availability

The data will be made available upon reasonable request to the corresponding author.

References

  1. American Psychiatric Association, ed. (2022). Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition, Text Revision (DSM-5-TR). Washington, DC, USA: American Psychiatric Publishing.

  2. Solé B, Jiménez E, Torrent C, Reinares M, Bonnin CDM, Torres I, et al. Cognitive impairment in bipolar disorder: treatment and prevention strategies. Int J Neuropsychopharmacol. 2017;20:670–80.

    Article  PubMed  PubMed Central  Google Scholar 

  3. McGrath JJ, Al-Hamzawi A, Alonso J, Altwaijri Y, Andrade LH, Bromet EJ, et al. Age of onset and cumulative risk of mental disorders: a cross-national analysis of population surveys from 29 countries. Lancet Psychiatry. 2023;10:668–81.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schürhoff F, Bellivier F, Jouvent R, Mouren-Siméoni MC, Bouvard M, Allilaire JF, et al. Early and late onset bipolar disorders: two different forms of manic-depressive illness? J Affect Disord. 2000;58:215–21.

    Article  PubMed  Google Scholar 

  5. Schouws SN, Comijs HC, Stek ML, Dekker J, Oostervink F, Naarding P, et al. Cognitive impairment in early and late bipolar disorder. Am J Geriatr Psychiatry. 2009;17:508–15.

    Article  PubMed  Google Scholar 

  6. Vargas C, López-Jaramillo C, Vieta E. A systematic literature review of resting state network—functional MRI in bipolar disorder. J Affect Disord. 2013;150:727–35.

    Article  PubMed  Google Scholar 

  7. Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A review of molecular interplay between neurotrophins and miRNAs in neuropsychological disorders. Mol Neurobiol. 2022;59:6260–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Camkurt MA, Karababa İF, Erdal ME, Kandemir SB, Fries GR, Bayazıt H, et al. MicroRNA dysregulation in manic and euthymic patients with bipolar disorder. J Affect Disord. 2020;261:84–90.

    Article  CAS  PubMed  Google Scholar 

  9. Bartel DP. Metazoan micrornas. Cell. 2018;173:20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ceylan D, Tufekci KU, Keskinoglu P, Genc S, Özerdem A. Circulating exosomal microRNAs in bipolar disorder. J Affect Disord. 2020;262:99–107.

    Article  CAS  PubMed  Google Scholar 

  11. Kim AH, Reimers M, Maher B, Williamson V, McMichael O, McClay JL, et al. MicroRNA expression profiling in the prefrontal cortex of individuals affected with schizophrenia and bipolar disorders. Schizophr Res. 2010;124:183–91.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fries GR, Carvalho AF, Quevedo J. The miRNome of bipolar disorder. J Affect Disord. 2018;233:110–6.

    Article  CAS  PubMed  Google Scholar 

  13. Milanesi E, Hadar A, Maffioletti E, Werner H, Shomron N, Gennarelli M, et al. Insulin-like growth factor 1 differentially affects lithium sensitivity of lymphoblastoid cell lines from lithium responder and non-responder bipolar disorder patients. J Mol Neurosci. 2015;56:681–7.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou R, Yuan P, Wang Y, Hunsberger JG, Elkahloun A, Wei Y, et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacology. 2009;34:1395–405.

    Article  CAS  PubMed  Google Scholar 

  15. Kidnapillai S, Wade B, Bortolasci CC, Panizzutti B, Spolding B, Connor T, et al. Drugs used to treat bipolar disorder act via microRNAs to regulate expression of genes involved in neurite outgrowth. J Psychopharmacol. 2020;34:370–9.

    Article  CAS  PubMed  Google Scholar 

  16. Hockings P, Saeed N, Simms R, Smith N, Hall MG, Waterton JC, et al. MRI biomarkers. Advances in magnetic resonance technology and applications. 1. Academic Press; 2020. p. liii–lxxxvi.

    Google Scholar 

  17. Bellani M, Perlini C, Ferro A, Cerruti S, Rambaldelli G, Isola M, et al. White matter microstructure alterations in bipolar disorder. Funct Neurol. 2012;27:29.

    PubMed  PubMed Central  Google Scholar 

  18. Squarcina L, Paioni SL, Bellani M, Rossetti MG, Houenou J, Polosan M, et al. White matter integrity in bipolar disorder investigated with diffusion tensor magnetic resonance imaging and fractal geometry. J Affect Disord. 2024;345:200–7.

    Article  PubMed  Google Scholar 

  19. Basser PJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66:259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Prunas C, Delvecchio G, Perlini C, Barillari M, Ruggeri M, Altamura AC, et al. Diffusion imaging study of the Corpus Callosum in bipolar disorder. Psychiatry Res: Neuroimaging. 2018;271:75–81.

    Article  PubMed  Google Scholar 

  21. Videtta G, Squarcina L, Rossetti MG, Brambilla P, Delvecchio G, Bellani M. White matter modifications of corpus callosum in bipolar disorder: A DTI tractography review. J Affect Disord. 2023;338:220–7.

    Article  PubMed  Google Scholar 

  22. Favre P, Pauling M, Stout J, Hozer F, Sarrazin S, Abé C, et al. Widespread white matter microstructural abnormalities in bipolar disorder: Evidence from mega-and meta-analyses across 3033 individuals. Neuropsychopharmacology. 2019;44:2285–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhao G, Lau WK, Wang C, Yan H, Zhang C, Lin K, et al. A comparative multimodal meta-analysis of anisotropy and volume abnormalities in white matter in people suffering from bipolar disorder or schizophrenia. Schizophr Bull. 2022;48:69–79.

    Article  PubMed  Google Scholar 

  24. Lu LH, Zhou XJ, Keedy SK, Reilly JL, Sweeney JA. White matter microstructure in untreated first episode bipolar disorder with psychosis: comparison with schizophrenia. Bipolar Disord. 2011;13:604–13.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Magioncalda P, Martino M, Conio B, Piaggio N, Teodorescu R, Escelsior A, et al. Patterns of microstructural white matter abnormalities and their impact on cognitive dysfunction in the various phases of type I bipolar disorder. J Affect Disord. 2016;193:39–50.

    Article  PubMed  Google Scholar 

  26. Ramírez-Bermúdez J, Marrufo-Melendez O, Berlanga-Flores C, Guadamuz A, Atriano C, Carrillo-Mezo R, et al. White matter abnormalities in late onset first episode mania: a diffusion tensor imaging study. Am J Geriatr Psychiatry. 2021;29:1225–36.

    Article  PubMed  Google Scholar 

  27. Banigan MG, Kao PF, Kozubek JA, Winslow AR, Medina J, Costa J, et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS ONE. 2013;8:e48814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Smalheiser NR, Lugli G, Zhang H, Rizavi H, Cook EH, Dwivedi Y. Expression of microRNAs and other small RNAs in prefrontal cortex in schizophrenia, bipolar disorder and depressed subjects. PLoS ONE. 2014;9:e86469.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Li Y, Fan C, Gao R, Lan T, Wang W, Yu SY. Hippocampal miR-211-5p regulates neurogenesis and depression-like behaviors in the rat. Neuropharmacology. 2021;194:108618.

    Article  CAS  PubMed  Google Scholar 

  30. Shen Y, Zhou T, Liu X, Liu Y, Li Y, Zeng D, et al. Sevoflurane-induced miR-211-5p promotes neuronal apoptosis by inhibiting Efemp2. ASN Neuro. 2021;13:17590914211035036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Azevedo JA, Carter BS, Meng F, Turner DL, Dai M, Schatzberg AF, et al. The microRNA network is altered in anterior cingulate cortex of patients with unipolar and bipolar depression. J Psychiatr Res. 2016;82:58–67.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bavamian S, Mellios N, Lalonde J, Fass DM, Wang J, Sheridan SD, et al. Dysregulation of miR-34a links neuronal development to genetic risk factors for bipolar disorder. Mol Psychiatry. 2015;20:573–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Overall JE, Gorham DR. The brief psychiatric rating scale. Psychol Rep. 1962;10:799–812.

    Article  Google Scholar 

  34. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–35.

    Article  CAS  PubMed  Google Scholar 

  35. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. World Medical Association. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human participants. JAMA. 2025;333:71–74.

    Article  Google Scholar 

  37. Visconte C, Fenoglio C, Serpente M, Muti P, Sacconi A, Rigoni M, et al. Altered extracellular vesicle miRNA profile in prodromal Alzheimer’s disease. Int J Mol Sci. 2023;24:14749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Serpente M, Delvecchio G, Fenoglio C, Di Consoli L, Giudici G, Borracci V, et al. Differential miRNA expression in neural-enriched extracellular vesicles as potential biomarker for frontotemporal dementia and bipolar disorder. Neurobiol Dis. 2025;208:106867.

    Article  CAS  PubMed  Google Scholar 

  39. Jenkinson M, Beckmann CF, Behrens TE, Woolrich MW, Smith SM. Fsl. Neuroimage. 2012;62:782–90.

    Article  PubMed  Google Scholar 

  40. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31:1487–505.

    Article  PubMed  Google Scholar 

  41. Mori S, Oishi K, Jiang H, Jiang L, Li X, Akhter K, et al. Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. Neuroimage. 2008;40:570–82.

    Article  PubMed  Google Scholar 

  42. Ong J, Woldhuis RR, Boudewijn IM, van den Berg A, Kluiver J, Kok K, et al. Age-related gene and miRNA expression changes in airways of healthy individuals. Sci Rep. 2019;9:3765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Feldman HM, Yeatman JD, Lee ES, Barde LH, Gaman-Bean S. Diffusion tensor imaging: A review for pediatric researchers and clinicians. J Dev Behav Pediatr. 2010;31:346–56.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17:77–94.

    Article  PubMed  Google Scholar 

  45. Wakana S, Caprihan A, Panzenboeck MM, Fallon JH, Perry M, Gollub RL, et al. Reproducibility of quantitative tractography methods applied to cerebral white matter. Neuroimage. 2007;36:630–44.

    Article  PubMed  Google Scholar 

  46. Baldauf D, Desimone R. Neural mechanisms of object-based attention. Science. 2014;344:424–7.

    Article  CAS  PubMed  Google Scholar 

  47. Stave EA, De Bellis MD, Hooper SR, Woolley DP, Chang SK, Chen SD. Dimensions of attention associated with the microstructure of corona radiata white matter. J Child Neurol. 2017;32:458–66.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gabrieli JD, Poldrack RA, Desmond JE. The role of left prefrontal cortex in language and memory. Proc Natl Acad Sci. 1998;95:906–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Carlén M. What constitutes the prefrontal cortex? Science. 2017;358:478–82.

    Article  PubMed  Google Scholar 

  50. Karababa IF, Bayazıt H, Kılıçaslan N, Celik M, Cece H, Karakas E, et al. Microstructural changes of anterior corona radiata in bipolar depression. Psychiatry Investig. 2015;12:367.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Mahon K, Burdick KE, Szeszko PR. A role for white matter abnormalities in the pathophysiology of bipolar disorder. Neurosci Biobehav Rev. 2010;34:533–54.

    Article  PubMed  Google Scholar 

  52. Poletti S, Bollettini I, Mazza E, Locatelli C, Radaelli D, Vai B, et al. Cognitive performances associate with measures of white matter integrity in bipolar disorder. J Affect Disord. 2015;174:342–52.

    Article  PubMed  Google Scholar 

  53. Chen L, Wang Y, Niu C, Zhong S, Hu H, Chen P, et al. Common and distinct abnormal frontal-limbic system structural and functional patterns in patients with major depression and bipolar disorder. NeuroImage: Clinical. 2018;20:42–50.

    Article  PubMed  Google Scholar 

  54. Mesbah R, Koenders MA, van der Wee NJ, Giltay EJ, van Hemert AM, de Leeuw M. Association between the fronto-limbic network and cognitive and emotional functioning in individuals with bipolar disorder: a systematic review and meta-analysis. JAMA Psychiatry. 2023;80:432–40.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vai B, Bertocchi C, Benedetti F. Cortico-limbic connectivity as a possible biomarker for bipolar disorder: where are we now? Expert Rev Neurother. 2019;19:159–72.

    Article  CAS  PubMed  Google Scholar 

  56. Benedetti F, Yeh PH, Bellani M, Radaelli D, Nicoletti MA, Poletti S, et al. Disruption of white matter integrity in bipolar depression as a possible structural marker of illness. Biol Psychiatry. 2011;69:309–17.

    Article  PubMed  Google Scholar 

  57. Niida R, Yamagata B, Niida A, Uechi A, Matsuda H, Mimura M. Aberrant anterior thalamic radiation structure in bipolar disorder: a diffusion tensor tractography study. Front Psychiatry. 2018;9:522.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ho NF, Li Z, Ji F, Wang M, Kuswanto CN, Sum MY, et al. Hemispheric lateralization abnormalities of the white matter microstructure in patients with schizophrenia and bipolar disorder. J Psychiatry Neurosci: JPN. 2017;42:242–51.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Manelis A, Soehner A, Halchenko YO, Satz S, Ragozzino R, Lucero M, et al. White matter abnormalities in adults with bipolar disorder type-II and unipolar depression. Sci Rep. 2021;11:7541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Phillips ML, Swartz HA. A critical appraisal of neuroimaging studies of bipolar disorder: toward a new conceptualization of underlying neural circuitry and a road map for future research. Am J Psychiatry. 2014;171:829–43.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Guttmann CR, Jolesz FA, Kikinis R, Killiany RJ, Moss MB, Sandor T, et al. White matter changes with normal aging. Neurology. 1998;50:972–8.

    Article  CAS  PubMed  Google Scholar 

  62. Sani G, Chiapponi C, Piras F, Ambrosi E, Simonetti A, Danese E, et al. Gray and white matter trajectories in patients with bipolar disorder. Bipolar Disord. 2016;18:52–62.

    Article  PubMed  Google Scholar 

  63. Rowley CD, Bazin PL, Tardif CL, Sehmbi M, Hashim E, Zaharieva N, et al. Assessing intracortical myelin in the living human brain using myelinated cortical thickness. Front Neurosci. 2015;9:396.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Feng Y, Duan C, Luo Z, Xiao W, Tian F. Silencing miR‐20a‐5p inhibits axonal growth and neuronal branching and prevents epileptogenesis through RGMa‐RhoA‐mediated synaptic plasticity. J Cell Mol Med. 2020;24:10573–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hata K, Fujitani M, Yasuda Y, Doya H, Saito T, Yamagishi S, et al. RGMa inhibition promotes axonal growth and recovery after spinal cord injury. J Cell Biol. 2006;173:47–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang T, Li BO, Yuan X, Cui L, Wang Z, Zhang Y, et al. MiR-20a plays a key regulatory role in the repair of spinal cord dorsal column lesion via PDZ-RhoGEF/RhoA/GAP43 axis in rat. Cell Mol Neurobiol. 2019;39:87–98.

    Article  PubMed  Google Scholar 

  67. Lim CH, Zainal NZ, Kanagasundram S, Zain SM, Mohamed Z. Preliminary examination of microRNA expression profiling in bipolar disorder I patients during antipsychotic treatment. Am J Med Genet Part B: Neuropsychiatr Genet. 2016;171:867–74.

    Article  CAS  Google Scholar 

  68. Zhang Y, Liu C, Wang J, Li Q, Ping H, Gao S, et al. MiR-299-5p regulates apoptosis through autophagy in neurons and ameliorates cognitive capacity in APPswe/PS1dE9 mice. Sci Rep. 2016;6:24566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kim HK, Tyryshkin K, Elmi N, Feilotter H, Andreazza AC. Examining redox modulation pathways in the post-mortem frontal cortex in patients with bipolar disorder through data mining of microRNA expression datasets. J Psychiatr Res. 2018;99:39–49.

    Article  PubMed  Google Scholar 

  70. Brown NC, Andreazza AC, Young LT. An updated meta-analysis of oxidative stress markers in bipolar disorder. Psychiatry Res. 2014;218:61–68.

    Article  CAS  PubMed  Google Scholar 

  71. Zucchi FC, Yao Y, Ward ID, Ilnytskyy Y, Olson DM, Benzies K, et al. Maternal stress induces epigenetic signatures of psychiatric and neurological diseases in the offspring. PLoS ONE. 2013;8:e56967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Chung DW, Chung Y, Bazmi HH, Lewis DA. Altered ErbB4 splicing and cortical parvalbumin interneuron dysfunction in schizophrenia and mood disorders. Neuropsychopharmacology. 2018;43:2478–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Goes FS, Rongione M, Chen YC, Karchin R, Elhaik E, Bipolar Genome Study. et al. Exonic DNA sequencing of ERBB4 in bipolar disorder. PLoS ONE. 2011;6:e20242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Fiori LM, Kos A, Lin R, Théroux JF, Lopez JP, Kühne C, et al. miR-323a regulates ERBB4 and is involved in depression. Mol Psychiatry. 2021;26:4191–204.

    Article  CAS  PubMed  Google Scholar 

  75. Van der Auwera S, Ameling S, Wittfeld K, Frenzel S, Bülow R, Nauck M, et al. Circulating microRNA miR-425-5p associated with brain white matter lesions and inflammatory processes. Int J Mol Sci. 2024;25:887.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Aronica R, Enrico P, Squarcina L, Brambilla P, Delvecchio G. Association between diffusion tensor imaging, inflammation and immunological alterations in unipolar and bipolar depression: A review. Neurosci Biobehav Rev. 2022;143:104922.

    Article  CAS  PubMed  Google Scholar 

  77. Bartholomeus CM, Riemersma–Van der Lek RF, Burger H, de Groot JC, Drexhage HA, Nolen WA, et al. Diffusion tensor imaging in euthymic bipolar disorder–A tract-based spatial statistics study. J Affect Disord. 2016;203:281–91.

  78. Sarrazin S, Poupon C, Linke J, Wessa M, Phillips M, Delavest M, et al. A multicenter tractography study of deep white matter tracts in bipolar I disorder: psychotic features and interhemispheric disconnectivity. JAMA Psychiatry. 2014;71:388–96.

    Article  PubMed  Google Scholar 

  79. Melloni EM, Poletti S, Vai B, Bollettini I, Colombo C, Benedetti F. Effects of illness duration on cognitive performances in bipolar depression are mediated by white matter microstructure. J Affect Disord. 2019;249:175–82.

    Article  PubMed  Google Scholar 

  80. Canales‐Rodríguez EJ, Verdolini N, Alonso‐Lana S, Torres ML, Panicalli F, Argila‐Plaza I, et al. Widespread intra‐axonal signal fraction abnormalities in bipolar disorder from multicompartment diffusion MRI: Sensitivity to diagnosis, association with clinical features and pharmacologic treatment. Hum Brain Mapp. 2023;44:4605–22.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Italian Ministry of Health (GR-2019-12369100 to Maria Serpente and Giuseppe Delvecchio). Andrea Arighi and Daniela Galimberti were supported by Centro Dino Ferrari". Paolo Brambilla was partially supported by grants from the Italian Ministry of Education and Research - MUR (‘Dipartimenti di Eccellenza’ Programme 2023–27 - Dept. of Pathophysiology and Transplantation, Università degli Studi di Milano), the Italian Ministry of Health (Hub Life Science- Diagnostica Avanzata, HLS-DA, PNC-E3-2022-23683266– CUP: C43C22001630001 / MI-0117; Ricerca Corrente 2026), by the ERANET Neuron JTC 2023 (ERP-2023-23684211-ResilNet) and Eranet Neuron JTC 2024 (ER-2024-23684536 - BRAWO Project).

Author information

Authors and Affiliations

Authors

Contributions

GD designed this particular study. GD and GV prepared the first version of the manuscript. GD, GV and LS carried out the data analysis. MS and CF extracted miRNA content from NDEVs. AA, ES and DG coordinated the blood sample extraction. LDC, AF and PB coordinated subject recruitment and sample collection. PB coordinated data management. AC and CP were involved in patient enrolment and assessment. ES and FMT were involved in MRI data acquisition. All authors revised and approved the final version of the manuscript.

Corresponding authors

Correspondence to Giuseppe Delvecchio or Paolo Brambilla.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delvecchio, G., Videtta, G., Serpente, M. et al. The role of neural derived extracellular vesicles micro-ribonucleic acid cargo in white matter integrity in early-onset and late-onset bipolar disorder. Mol Psychiatry (2026). https://doi.org/10.1038/s41380-026-03449-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41380-026-03449-y

Search

Quick links