Table 2 AUC results for machine-learning methods, averaged over 100 random seeds (1 standard error).
SVM linear (mean ± SD) | SVM rbf (mean ± SD) | Random Forest (mean ± SD) | Linear | Knn (2n) | Knn (3n) | GP | |
|---|---|---|---|---|---|---|---|
Dataset1 | 0.71 ± 0.001 | 0.45 ± 0.025 | 0.70 ± 0.008 | 0.74 | 0.63 | 0.68 | 0.64 |
Dataset2 | 0.88 ± 0.001 | 0.80 ± 0.007 | 0.83 ± 0.006 | 0.89 | 0.75 | 0.79 | 0.83 |
Both datasets | 0.89 ± 0.001 | 0.80 ± 0.001 | 0.76 ± 0.004 | 0.87 | 0.74 | 0.74 | 0.81 |