Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cathepsin B modulates microglial migration and phagocytosis of amyloid β in Alzheimer’s disease through PI3K-Akt signaling

Abstract

The approval of anti-amyloid β (Aβ) monoclonal antibodies (lecanemab) for the treatment of patients with early preclinical stage of Alzheimer’s disease (AD) by the Food and Drug Administration, suggests the reliability and importance of brain Aβ clearance for AD therapy. Microglia are the main phagocytes that clear Aβ in the brain, but the underlying regulatory mechanism is unclear. Here, we investigate the critical role of cathepsin B (CatB) in modulating microglial Aβ clearance from mouse brain. Wild-type or CatB−/− mice were injected with Aβ into the hippocampus from 1 to 3 weeks. Mice were evaluated for cognitive change, Aβ metabolism, neuroinflammation. Microglia and neuron cultures were prepared to verify the in vivo results. The statistical analyses were performed by student’s t test, one-way ANOVA with a post hoc Tukey’s test using the GraphPad Prism software package. CatB deficiency significantly reduces Aβ clearance efficiency and aggravates mouse cognitive decline. Exogenous Aβ markedly increases CatB expression in activated microglia. Transcriptome analysis and in vitro cell culture experiments demonstrate that CatB is associated with gene clusters involved in migration, phagocytosis, and inflammation. In addition, transcriptome analysis and immunoblotting suggest that CatB modulates microglial Aβ clearance via PI3K-AKT activation. Our study unveils a previously unknown role of CatB in promoting microglial functionality during Aβ clearance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CatB deficiency attenuated Aβ clearance in the mouse hippocampus.
Fig. 2: CatB deficiency attenuates microglial phagocytosis activity of Aβ.
Fig. 3: CatB inhibition attenuates microglial migration.
Fig. 4: CatB is involved in the PI3K-Akt pathway in microglia treated with Aβ.
Fig. 5: CatB-deficient microglia mediate toxic effects on neurons through insufficient Aβ clearance.

Similar content being viewed by others

Data availability

All data supporting the conclusions of this article are included within the article and the additional files.

References

  1. Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, et al. NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–62.

    Article  PubMed  Google Scholar 

  2. van Dyck CH, Swanson CJ, Aisen P, Bateman RJ, Chen C, Gee M, et al. Lecanemab in early Alzheimer’s disease. N Engl J Med. 2023;388:9–21.

    Article  PubMed  Google Scholar 

  3. Ni J, Wu Z, Peterts C, Yamamoto K, Qing H, Nakanishi H. The critical role of proteolytic relay through cathepsins B and E in the phenotypic change of microglia/macrophage. J Neurosci. 2015;35:12488–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Butler CA, Popescu AS, Kitchener EJA, Allendorf DH, Puigdellivol M, Brown GC. Microglial phagocytosis of neurons in neurodegeneration, and its regulation. J Neurochem. 2021;158:621–39.

    Article  CAS  PubMed  Google Scholar 

  5. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell. 2017;169:1276–90.e17.

    Article  CAS  PubMed  Google Scholar 

  6. Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-associated microglia: a universal immune sensor of neurodegeneration. Cell. 2018;173:1073–81.

    Article  CAS  PubMed  Google Scholar 

  7. Barrett AJ. Human cathepsin B1. purification and some properties of the enzyme. Biochem J. 1973;131:809–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Xie Z, Zhao M, Yan C, Kong W, Lan F, Narengaowa, et al. Cathepsin B in programmed cell death machinery: mechanisms of execution and regulatory pathways. Cell Death Dis. 2023;14:255.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wu Z, Ni J, Liu Y, Teeling JL, Takayama F, Collcutt A, et al. Cathepsin B plays a critical role in inducing Alzheimer’s disease-like phenotypes following chronic systemic exposure to lipopolysaccharide from Porphyromonas gingivalis in mice. Brain Behav Immun. 2017;65:350–61.

    Article  CAS  PubMed  Google Scholar 

  10. Sun B, Zhou Y, Halabisky B, Lo I, Cho SH, Mueller-Steiner S, et al. Cystatin C-cathepsin B axis regulates amyloid beta levels and associated neuronal deficits in an animal model of Alzheimer’s disease. Neuron. 2008;60:247–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Embury CM, Dyavarshetty B, Lu Y, Wiederin JL, Ciborowski P, Gendelman HE, et al. Cathepsin B improves ss-amyloidosis and learning and memory in models of Alzheimer’s disease. J Neuroimmune Pharmacol. 2017;12:340–52.

    Article  PubMed  Google Scholar 

  12. Liu Y, Wu Z, Zhang X, Ni J, Yu W, Zhou Y, et al. Leptomeningeal cells transduce peripheral macrophages inflammatory signal to microglia in reponse to Porphyromonas gingivalis LPS. Mediators Inflamm. 2013;2013:407562.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ni J, Wu Z, Meng J, Saito T, Saido TC, Qing H, et al. An impaired intrinsic microglial clock system induces neuroinflammatory alterations in the early stage of amyloid precursor protein knock-in mouse brain. J Neuroinflammation. 2019;16:173.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Czirr E, Castello NA, Mosher KI, Castellano JM, Hinkson IV, Lucin KM, et al. Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity. J Exp Med. 2017;214:1081–92.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xie Z, Meng J, Wu Z, Nakanishi H, Hayashi Y, Kong W, et al. The dual nature of microglia in Alzheimer’s disease: a microglia-neuron crosstalk perspective. Neuroscientist. 2022;29:616–38.

  16. Stoka V, Turk V, Turk B. Lysosomal cathepsins and their regulation in aging and neurodegeneration. Ageing Res Rev. 2016;32:22–37.

    Article  CAS  PubMed  Google Scholar 

  17. Ni J, Wu Z, Stoka V, Meng J, Hayashi Y, Peters C, et al. Increased expression and altered subcellular distribution of cathepsin B in microglia induce cognitive impairment through oxidative stress and inflammatory response in mice. Aging Cell. 2019;18:e12856.

    Article  PubMed  Google Scholar 

  18. Saito T, Matsuba Y, Mihira N, Takano J, Nilsson P, Itohara S, et al. Single App knock-in mouse models of Alzheimer’s disease. Nat Neurosci. 2014;17:661–3.

    Article  CAS  PubMed  Google Scholar 

  19. Perego C, Fumagalli S, De Simoni MG. Temporal pattern of expression and colocalization of microglia/macrophage phenotype markers following brain ischemic injury in mice. J Neuroinflammation. 2011;8:174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Uxa S, Castillo-Binder P, Kohler R, Stangner K, Muller GA, Engeland K. Ki-67 gene expression. Cell Death Differ. 2021;28:3357–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chu E, Mychasiuk R, Hibbs ML, Semple BD. Dysregulated phosphoinositide 3-kinase signaling in microglia: shaping chronic neuroinflammation. J Neuroinflammation. 2021;18:276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao Y, Wu X, Li X, Jiang L-L, Gui X, Liu Y, et al. TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron. 2018;97:1023–31.

  23. Matosin N, Fernandez-Enright F, Lum JS, Engel M, Andrews JL, Gassen NC, et al. Molecular evidence of synaptic pathology in the CA1 region in schizophrenia. NPJ Schizophr. 2016;2:16022.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hook VY, Kindy M, Hook G. Inhibitors of cathepsin B improve memory and reduce beta-amyloid in transgenic Alzheimer disease mice expressing the wild-type, but not the Swedish mutant, beta-secretase site of the amyloid precursor protein. J Biol Chem. 2008;283:7745–53.

    Article  CAS  PubMed  Google Scholar 

  25. Kindy MS, Yu J, Zhu H, El-Amouri SS, Hook V, Hook GR. Deletion of the cathepsin B gene improves memory deficits in a transgenic ALZHeimer’s disease mouse model expressing AbetaPP containing the wild-type beta-secretase site sequence. J Alzheimers Dis. 2012;29:827–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hook VY, Kindy M, Reinheckel T, Peters C, Hook G. Genetic cathepsin B deficiency reduces beta-amyloid in transgenic mice expressing human wild-type amyloid precursor protein. Biochem Biophys Res Commun. 2009;386:284–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 2016;24:332–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Monobe M, Katayanagi Y, Maeda-Yamamoto M, Hiramoto S. Enhancement of the immunostimulatory activity of 1,25-dihydroxyvitamin D3-differentiated HL60 cells with an arabinoxylan from wheat bran. Food Sci Technol Res. 2012;18:481–84.

    Article  CAS  Google Scholar 

  29. Njie EG, Boelen E, Stassen FR, Steinbusch HW, Borchelt DR, Streit WJ. Ex vivo cultures of microglia from young and aged rodent brain reveal age-related changes in microglial function. Neurobiol Aging. 2012;33:195.e1–12.

    Article  CAS  PubMed  Google Scholar 

  30. Floden AM, Combs CK. Microglia demonstrate age-dependent interaction with amyloid-beta fibrils. J Alzheimers Dis. 2011;25:279–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Daria A, Colombo A, Llovera G, Hampel H, Willem M, Liesz A, et al. Young microglia restore amyloid plaque clearance of aged microglia. EMBO J. 2017;36:583–603.

    Article  CAS  PubMed  Google Scholar 

  32. Tarassishin L, Suh HS, Lee SC. Interferon regulatory factor 3 plays an anti-inflammatory role in microglia by activating the PI3K/Akt pathway. J Neuroinflammation. 2011;8:187.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu ZZ, Xiu P, Lv JW, Wang FH, Dong XF, Liu F, et al. Integrin alphavbeta3 is required for cathepsin B-induced hepatocellular carcinoma progression. Mol Med Rep. 2015;11:3499–504.

    Article  CAS  PubMed  Google Scholar 

  34. Jiang M, Meng J, Zeng F, Qing H, Hook G, Hook V, et al. Cathepsin B inhibition blocks neurite outgrowth in cultured neurons by regulating lysosomal trafficking and remodeling. J Neurochem. 2020;155:300–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Elmore MRP, Hohsfield LA, Kramár EA, Soreq L, Lee RJ, Pham ST, et al. Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell. 2018;17:e12832.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Meng J, Liu Y, Xie Z, Qing H, Lei P, Ni J. Nucleus distribution of cathepsin B in senescent microglia promotes brain aging through degradation of sirtuins. Neurobiol Aging. 2020;96:255–66.

    Article  CAS  PubMed  Google Scholar 

  37. Ni J, Lan F, Xu Y, Nakanishi H, Li X. Extralysosomal cathepsin B in central nervous system: mechanisms and therapeutic implications. Brain Pathol. 2022;32:e13071.

  38. Babcock AA, Ilkjaer L, Clausen BH, Villadsen B, Dissing-Olesen L, Bendixen AT, et al. Cytokine-producing microglia have an altered beta-amyloid load in aged APP/PS1 Tg mice. Brain Behav Immun. 2015;48:86–101.

    Article  CAS  PubMed  Google Scholar 

  39. Rivera-Escalera F, Pinney JJ, Owlett L, Ahmed H, Thakar J, Olschowka JA, et al. IL-1beta-driven amyloid plaque clearance is associated with an expansion of transcriptionally reprogrammed microglia. J Neuroinflammation. 2019;16:261.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Biological and Medical Engineering Core Facilities of Beijing Institute of Technology for supporting experimental equipment.

Funding

This work was supported by funding from National Natural Science Foundation of China (32070954, 82401130, 82101394, 82001167), Guangdong Provincial Department of Education General University Innovation Team Project (2024KCXTD016), Beijing Natural Science Foundation (7212066) and China Postdoctoral Science Foundation (2023MD734244).

Author information

Authors and Affiliations

Contributions

JN designed the research and wrote the manuscript; MJ performed most of the experiments and data analysis and wrote the manuscript. DZ, YZ, WK, and ZX performed part of the animal experiments. YX and YL conducted cell culture. SZ, XK, SZ, and RM analyzed data. YP, ZW, HN, JZ, HL, and ZQ provided the reagents. LL and HQ provided helpful suggestions to the manuscript. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Li Lin or Junjun Ni.

Ethics declarations

Competing interests

The author declares no competing interests.

Ethics approval

All animal care and experimental procedures were approved by the Institutional Animal Care and Use Committee of the Beijing Institute of Technology (BIT-EC-SCXK2018-0003-M-2021028) in conformity with the international guidelines on the ethics of animal experimentation.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, M., Zhao, D., Zhou, Y. et al. Cathepsin B modulates microglial migration and phagocytosis of amyloid β in Alzheimer’s disease through PI3K-Akt signaling. Neuropsychopharmacol. 50, 640–650 (2025). https://doi.org/10.1038/s41386-024-01994-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-024-01994-0

This article is cited by

Search

Quick links