Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Four dimensions of individualization in brain stimulation for psychiatric disorders: context, target, dose, and timing

A Correction to this article was published on 18 June 2025

This article has been updated

Abstract

Non-invasive Brain Stimulation (NIBS) technologies, including transcranial electrical (tES) and magnetic (TMS) stimulation, have emerged as promising interventions for various psychiatric disorders. FDA-approved TMS protocols in depression, OCD and nicotine use disorder provide a meaningful improvement. Treatment efficacy however remains inconsistent across individuals, and one relevant reason is intervention effect variability based on individual factors. There is a growing effort to develop individualized interventions, reinforced recently by FDA approval of a new TMS protocol that includes individualized fMRI-based targeting along with other modifications with higher reported effect size than previous “one size fits all” protocols. This paper discusses the dimensions for individualizing tES/TMS protocols to enhance therapeutic efficacy. We propose a multifaceted approach to personalizing NIBS, considering four levels: (1) context, (2) target, (3) dose, and (4) timing. By addressing inter- and intra-individual variability, we highlight a path toward precision medicine using individualized Brain Stimulation to treat psychiatric diseases. Despite challenges and limitations, this approach encourages broader and more systematic adoption of personalized Brain Stimulation techniques to improve clinical outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NIBS individualization.

Similar content being viewed by others

Change history

  • 19 May 2025

    The original online version of this article was revised: The copyright holder for this article was incorrectly given as ‘This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025’ but should have been ‘The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2025’.

  • 18 June 2025

    A Correction to this paper has been published: https://doi.org/10.1038/s41386-025-02134-y

References

  1. Cohen SL, Bikson M, Badran BW, George MS. A visual and narrative timeline of US FDA milestones for Transcranial Magnetic Stimulation (TMS) devices. Brain Stimul. 2022;15:73–5.

    Article  PubMed  Google Scholar 

  2. Cocchi L, Zalesky A. Personalized transcranial magnetic stimulation in psychiatry. Biol Psychiatry. 2018;3:731–41.

    Google Scholar 

  3. Cole EJ, Phillips AL, Bentzley BS, Stimpson KH, Nejad R, Barmak F, et al. Stanford neuromodulation therapy (SNT): a double-blind randomized controlled trial. Am J Psychiatry. 2022;179:132–41.

    Article  PubMed  Google Scholar 

  4. Steele VR, Maxwell AM. Treating cocaine and opioid use disorder with transcranial magnetic stimulation: a path forward. Pharmacol Biochem Behav. 2021;209:173240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ekhtiari H, Tavakoli H, Addolorato G, Baeken C, Bonci A, Campanella S, et al. Transcranial electrical and magnetic stimulation (tES and TMS) for addiction medicine: a consensus paper on the present state of the science and the road ahead. Neurosci Biobehav Rev. 2019;104:118–40.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Maier M Personalized medicine—a tradition in general practice! : Taylor & Francis; 2019. p. 63-4.

  7. Lulic T, El-Sayes J, Fassett HJ, Nelson AJ. Physical activity levels determine exercise-induced changes in brain excitability. PloS one. 2017;12:e0173672.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cabrera L, Achtyes E, Bluhm R, McCright A. Views about neuromodulation interventions for depression by stakeholder group, treatment modality, and depression severity. Compr Psychiatry. 2023;122:152365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sullivan CR, Henry A, Lehman J, Caola L, Nahas Z, Widge AS, et al. Rewriting the script: the need for effective education to address racial disparities in transcranial magnetic stimulation uptake in BIPOC communities. Neuroethics. 2024;17:8.

    Article  Google Scholar 

  10. Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, et al. Evidence of neuroplastic changes after transcranial magnetic, electric, and deep Brain Stimulation. Brain Sci. 2022;12:929.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Spagnolo PA, Montemitro C, Pettorruso M, Martinotti G, Di Giannantonio M. Better together? Coupling pharmacotherapies and cognitive interventions with non-invasive Brain Stimulation for the treatment of addictive disorders. Front Neurosci. 2020;13:1385.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sathappan AV, Luber BM, Lisanby SH. The dynamic duo: combining noninvasive Brain Stimulation with cognitive interventions. Prog Neuro-Psychopharmacol Biol Psychiatry. 2019;89:347–60.

    Article  Google Scholar 

  13. Xu X, Ding X, Chen L, Chen T, Su H, Li X, et al. The transcranial direct current stimulation over prefrontal cortex combined with the cognitive training reduced the cue-induced craving in female individuals with methamphetamine use disorder: a randomized controlled trial. J Psychiatr Res. 2021;134:102–10.

    Article  PubMed  Google Scholar 

  14. Hauer L, Scarano GI, Brigo F, Golaszewski S, Lochner P, Trinka E, et al. Effects of repetitive transcranial magnetic stimulation on nicotine consumption and craving: a systematic review. Psychiatry Res. 2019;281:112562.

    Article  CAS  PubMed  Google Scholar 

  15. Tofighi B, Chemi C, Ruiz-Valcarcel J, Hein P, Hu L. Smartphone apps targeting alcohol and illicit substance use: systematic search in in commercial app stores and critical content analysis. JMIR Mhealth Uhealth. 2019;7:e11831.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cassani R, Novak GS, Falk TH, Oliveira AA. Virtual reality and non-invasive Brain Stimulation for rehabilitation applications: a systematic review. J Neuroeng Rehabil. 2020;17:1–16.

    Article  Google Scholar 

  17. Kumpf U, Palm U, Eder J, Ezim H, Stadler M, Burkhardt G, et al. TDCS at home for depressive disorders: an updated systematic review and lessons learned from a prematurely terminated randomized controlled pilot study. Eur Arch Psychiatry Clin Neurosci. 2023;273:1403–20.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sack AT, Paneva J, Küthe T, Dijkstra E, Zwienenberg L, Arns M, et al. Target engagement and brain state dependence of transcranial magnetic stimulation: implications for clinical practice. Biol Psychiatry. 2024;95:536–44.

    Article  PubMed  Google Scholar 

  19. Bradley C, Nydam AS, Dux PE, Mattingley JB. State-dependent effects of neural stimulation on brain function and cognition. Nat Rev Neurosci. 2022;23:459–75.

    Article  CAS  PubMed  Google Scholar 

  20. Schutter DJ, Smits F, Klaus J. Mind matters: A narrative review on affective state-dependency in non-invasive Brain Stimulation. Int J Clin Health Psychol. 2023;23:100378.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Koban L, Wager TD, Kober H. A neuromarker for drug and food craving distinguishes drug users from non-users. Nat Neurosci. 2023;26:316–25.

    Article  CAS  PubMed  Google Scholar 

  22. Kearney-Ramos TE, Dowdle LT, Mithoefer OJ, Devries W, George MS, Hanlon CA. State-dependent effects of ventromedial prefrontal cortex continuous thetaburst stimulation on cocaine cue reactivity in chronic cocaine users. Front Psychiatry. 2019;10:317.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Steele VR. Transcranial magnetic stimulation as an interventional tool for addiction. Front Neurosci. 2020;14:592343.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zangen A, Moshe H, Martinez D, Barnea‐Ygael N, Vapnik T, Bystritsky A, et al. Repetitive transcranial magnetic stimulation for smoking cessation: a pivotal multicenter double‐blind randomized controlled trial. World Psychiatry. 2021;20:397–404.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Isserles M, Rosenberg O, Dannon P, Levkovitz Y, Kotler M, Deutsch F, et al. Cognitive–emotional reactivation during deep transcranial magnetic stimulation over the prefrontal cortex of depressive patients affects antidepressant outcome. J Affect Disord. 2011;128:235–42.

    Article  PubMed  Google Scholar 

  26. Ten Oever S, De Graaf TA, Bonnemayer C, Ronner J, Sack AT, Riecke L. Stimulus presentation at specific neuronal oscillatory phases experimentally controlled with tACS: Implementation and applications. Front Cell Neurosci. 2016;10:240.

    PubMed  PubMed Central  Google Scholar 

  27. Isserles M, Shalev AY, Roth Y, Peri T, Kutz I, Zlotnick E, et al. Effectiveness of deep transcranial magnetic stimulation combined with a brief exposure procedure in post-traumatic stress disorder–a pilot study. Brain Stimul. 2013;6:377–83.

    Article  PubMed  Google Scholar 

  28. Carmi L, Alyagon U, Barnea-Ygael N, Zohar J, Dar R, Zangen A. Clinical and electrophysiological outcomes of deep TMS over the medial prefrontal and anterior cingulate cortices in OCD patients. Brain Stimul. 2018;11:158–65.

    Article  PubMed  Google Scholar 

  29. Carmi L, Tendler A, Bystritsky A, Hollander E, Blumberger DM, Daskalakis J, et al. Efficacy and safety of deep transcranial magnetic stimulation for obsessive-compulsive disorder: a prospective multicenter randomized double-blind placebo-controlled trial. Am J Psychiatry. 2019;176:931–8.

    Article  PubMed  Google Scholar 

  30. Tendler A, Sisko E, DeLuca M, Garrison S, Mages D, Mayfield H, et al. Deep TMS for OCD with the H7 coil: Case series in a naturalistic setting. Brain Stimul. 2018;11:e14–e5.

    Article  Google Scholar 

  31. Tendler A, Sisko E, Barnea-Ygael N, Zangen A, Storch EA. A method to provoke obsessive compulsive symptoms for basic research and clinical interventions. Front Psychiatry. 2019;10:814.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Hoogerwerf E, Greeven A, Goekoop R, Spinhoven P. Personalized exposure and experience sampling method feedback versus exposure as usual for obsessive–compulsive disorder: a study protocol for a randomized controlled trial. Trials. 2024;25:43.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Bikson M, Rahman A. Origins of specificity during tDCS: anatomical, activity-selective, and input-bias mechanisms. Front Hum Neurosci. 2013;7:688.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nitsche MA, Liebetanz D, Antal A, Lang N, Tergau F, Paulus W. Modulation of cortical excitability by weak direct current stimulation–technical, safety and functional aspects. Suppl Clin Neurophysiol. 2003;56:255–76.

    Article  PubMed  Google Scholar 

  35. Ziemann U, Reis J, Schwenkreis P, Rosanova M, Strafella A, Badawy R, et al. TMS and drugs revisited 2014. Clin Neurophysiol. 2015;126:1847–68.

    Article  PubMed  Google Scholar 

  36. McDonnell MN, Orekhov Y, Ziemann U. Suppression of LTP-like plasticity in human motor cortex by the GABA B receptor agonist baclofen. Exp Brain Res. 2007;180:181–6.

    Article  CAS  PubMed  Google Scholar 

  37. Nitsche MA, Grundey J, Liebetanz D, Lang N, Tergau F, Paulus W. Catecholaminergic consolidation of motor cortical neuroplasticity in humans. Cereb Cortex. 2004;14:1240–5.

    Article  PubMed  Google Scholar 

  38. Martinotti G, Montemitro C, Pettorruso M, Viceconte D, Alessi M, Di Carlo F, et al. Augmenting pharmacotherapy with neuromodulation techniques for the treatment of bipolar disorder: a focus on the effects of mood stabilizers on cortical excitability. Expert Opin Pharmacother. 2019;20:1575–88.

    Article  CAS  PubMed  Google Scholar 

  39. Best SR, Pavel DG, Haustrup N. Combination therapy with transcranial magnetic stimulation and ketamine for treatment-resistant depression: a long-term retrospective review of clinical use. Heliyon. 2019;5:e02187.

  40. Wrightson JG, Cole J, Sohn MN, McGirr A. The effects of D-cycloserine on corticospinal excitability after repeated spaced intermittent theta-burst transcranial magnetic stimulation: a randomized controlled trial in healthy individuals. Neuropsychopharmacology. 2023;48:1217–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cole J, Sohn MN, Harris AD, Bray SL, Patten SB, McGirr A. Efficacy of adjunctive D-cycloserine to intermittent theta-burst stimulation for major depressive disorder: a randomized clinical trial. JAMA Psychiatry. 2022;79:1153–61.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Paulus W, Classen J, Cohen LG, Large CH, Di Lazzaro V, Nitsche M, et al. State of the art: pharmacologic effects on cortical excitability measures tested by transcranial magnetic stimulation. Brain Stimul. 2008;1:151–63.

    Article  PubMed  Google Scholar 

  43. Zhang M, Wang R, Luo X, Zhang S, Zhong X, Ning Y, et al. Repetitive transcranial magnetic stimulation target location methods for depression. Front Neurosci. 2021;15:695423.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Upton S, Brown AA, Ithman M, Newman-Norlund R, Sahlem G, Prisciandaro JJ, et al. Effects of hyperdirect pathway theta burst transcranial magnetic stimulation on inhibitory control, craving, and smoking in adults with nicotine dependence: A double-blind, randomized crossover trial. Biol Psychiatry 2023;8:1156–65.

    Google Scholar 

  45. Soleimani G, Kuplicki R, Lim K, Paulus M, Ekhtiari H, editors. Dual Neuromodulation Targets for Treatment of Substance Use Disorders: Unraveling the Interacting Role of DLPFC and Frontopolar Cortex During Drug Cue Reactivity. Neuropsychopharmacology; 2023: Springernature Campus, 4 Crinan St, London, N1 9xw, England.

  46. Soleimani G, Conelea CA, Kuplicki R, Opitz A, Lim KO, Paulus MP, et al. Targeting VMPFC‐amygdala circuit with TMS in substance use disorder: a mechanistic framework. Addict Biol. 2025;30:e70011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ji GJ, Xie W, Yang T, Wu Q, Sui P, Bai T, et al. Pre‐supplementary motor network connectivity and clinical outcome of magnetic stimulation in obsessive–compulsive disorder. Hum Brain Mapp. 2021;42:3833–44.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Pedapati E, DiFrancesco M, Wu S, Giovanetti C, Nash T, Mantovani A, et al. Neural correlates associated with symptom provocation in pediatric obsessive compulsive disorder after a single session of sham-controlled repetitive transcranial magnetic stimulation. Psychiatry Res. 2015;233:466–73.

    Article  PubMed  Google Scholar 

  49. Szaflarski JP, Nenert R, Allendorfer JB, Martin AN, Amara AW, Griffis JC, et al. Intermittent theta burst stimulation (iTBS) for treatment of chronic post-stroke aphasia: results of a pilot randomized, double-blind, sham-controlled trial. Med Sci Monit. 2021;27:e931468–1.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ren J, Ren W, Zhou Y, Dahmani L, Duan X, Fu X, et al. Personalized functional imaging-guided rTMS on the superior frontal gyrus for post-stroke aphasia: A randomized sham-controlled trial. Brain Stimul. 2023;16:1313–21.

    Article  PubMed  Google Scholar 

  51. Schönfeldt-Lecuona C, Grön G, Walter H, Büchler N, Wunderlich A, Spitzer M, et al. Stereotaxic rTMS for the treatment of auditory hallucinations in schizophrenia. Neuroreport. 2004;15:1669–73.

    Article  PubMed  Google Scholar 

  52. Sommer I, De Weijer A, Daalman K, Neggers S, Somers M, Kahn R, et al. Can fMRI-guidance improve the efficacy of rTMS treatment for auditory verbal hallucinations? Schizophr Res. 2007;93:406–8.

  53. Kindler J, Homan P, Jann K, Federspiel A, Flury R, Hauf M, et al. Reduced neuronal activity in language-related regions after transcranial magnetic stimulation therapy for auditory verbal hallucinations. Biol Psychiatry. 2013;73:518–24.

    Article  PubMed  Google Scholar 

  54. Luber BM, Davis S, Bernhardt E, Neacsiu A, Kwapil L, Lisanby SH, et al. Using neuroimaging to individualize TMS treatment for depression: Toward a new paradigm for imaging-guided intervention. Neuroimage. 2017;148:1–7.

    Article  PubMed  Google Scholar 

  55. Cash RF, Weigand A, Zalesky A, Siddiqi SH, Downar J, Fitzgerald PB, et al. Using brain imaging to improve spatial targeting of transcranial magnetic stimulation for depression. Biol Psychiatry. 2021;90:689–700.

    Article  PubMed  Google Scholar 

  56. Fox MD, Buckner RL, White MP, Greicius MD, Pascual-Leone A. Efficacy of transcranial magnetic stimulation targets for depression is related to intrinsic functional connectivity with the subgenual cingulate. Biol Psychiatry. 2012;72:595–603.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cash RF, Zalesky A, Thomson RH, Tian Y, Cocchi L, Fitzgerald PB. Subgenual functional connectivity predicts antidepressant treatment response to transcranial magnetic stimulation: independent validation and evaluation of personalization. Biol Psychiatry. 2019;86:e5–e7.

    Article  PubMed  Google Scholar 

  58. Cash RF, Cocchi L, Lv J, Fitzgerald PB, Zalesky A. Functional magnetic resonance imaging–guided personalization of transcranial magnetic stimulation treatment for depression. JAMA Psychiatry. 2021;78:337–9.

    Article  PubMed  Google Scholar 

  59. Weigand A, Horn A, Caballero R, Cooke D, Stern AP, Taylor SF, et al. Prospective validation that subgenual connectivity predicts antidepressant efficacy of transcranial magnetic stimulation sites. Biol Psychiatry. 2018;84:28–37.

    Article  CAS  PubMed  Google Scholar 

  60. Ge R, Downar J, Blumberger DM, Daskalakis ZJ, Vila-Rodriguez F. Functional connectivity of the anterior cingulate cortex predicts treatment outcome for rTMS in treatment-resistant depression at 3-month follow-up. Brain Stimul. 2020;13:206–14.

    Article  PubMed  Google Scholar 

  61. Elbau IG, Lynch CJ, Downar J, Vila-Rodriguez F, Power JD, Solomonov N, et al. Functional connectivity mapping for rTMS target selection in depression. Am J Psychiatry. 2023;180:230–40.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Sangchooli A, Zare-Bidoky M, Jouzdani AF, Schacht J, Bjork JM, Claus ED, et al. Parameter space and potential for biomarker development in 25 years of fMRI drug cue reactivity: a systematic review. JAMA Psychiatry. 2024;81:414–25.

  63. Nummenmaa A, McNab JA, Savadjiev P, Okada Y, Hämäläinen MS, Wang R, et al. Targeting of white matter tracts with transcranial magnetic stimulation. Brain Stimulation. 2014;7:80–4.

    Article  PubMed  Google Scholar 

  64. De Geeter N, Crevecoeur G, Leemans A, Dupré L. Effective electric fields along realistic DTI-based neural trajectories for modelling the stimulation mechanisms of TMS. Phys Med Biol. 2014;60:453.

    Article  PubMed  Google Scholar 

  65. Momi D, Ozdemir RA, Tadayon E, Boucher P, Di Domenico A, Fasolo M, et al. Perturbation of resting-state network nodes preferentially propagates to structurally rather than functionally connected regions. Sci Rep. 2021;11:12458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wilson S. Commentary: Substance use and the brain: it is not straightforward to differentiate cause from consequence–a commentary on Kim‐Spoon et al.(2020). J Child Psychol Psychiatry. 2021;62:437–40.

    Article  PubMed  Google Scholar 

  67. Joutsa J, Moussawi K, Siddiqi SH, Abdolahi A, Drew W, Cohen AL, et al. Brain lesions disrupting addiction map to a common human brain circuit. Nat Med. 2022;28:1249–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cagnan H, Pedrosa D, Little S, Pogosyan A, Cheeran B, Aziz T, et al. Stimulating at the right time: phase-specific deep Brain Stimulation. Brain. 2017;140:132–45.

    Article  PubMed  Google Scholar 

  69. Salehinejad MA, Wischnewski M, Ghanavati E, Mosayebi-Samani M, Kuo M-F, Nitsche MA. Cognitive functions and underlying parameters of human brain physiology are associated with chronotype. Nat Commun. 2021;12:4672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhao Z, Shirinpour S, Tran H, Wischnewski M, Opitz A. Intensity-and frequency-specific effects of transcranial alternating current stimulation are explained by network dynamics. J Neural Eng. 2024;21:026024.

    Article  Google Scholar 

  71. Salehinejad M, Kuo M, Nitsche M. The impact of chronotypes and time of the day on tDCS-induced motor cortex plasticity and cortical excitability. Brain Stimul. 2019;12:421.

    Article  Google Scholar 

  72. Sale MV, Ridding MC, Nordstrom MA. Factors influencing the magnitude and reproducibility of corticomotor excitability changes induced by paired associative stimulation. Exp Brain Res. 2007;181:615–26.

    Article  PubMed  Google Scholar 

  73. Mielke MM, Miller VM. Improving clinical outcomes through attention to sex and hormones in research. Nat Rev Endocrinol. 2021;17:625–35.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Veldema J. Non-invasive Brain Stimulation and sex/polypeptide hormones in reciprocal interactions: a systematic review. Biomedicines. 2023;11:1981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Rivas-Grajales AM, Barbour T, Camprodon JA, Kritzer MD. The impact of sex hormones on transcranial magnetic stimulation measures of cortical excitability: A systematic review and considerations for clinical practice. Harv Rev Psychiatry. 2023;31:114–23.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Cuypers K, Marsman A. Transcranial magnetic stimulation and magnetic resonance spectroscopy: Opportunities for a bimodal approach in human neuroscience. Neuroimage. 2021;224:117394.

    Article  CAS  PubMed  Google Scholar 

  77. Michou E, Williams S, Vidyasagar R, Downey D, Mistry S, Edden RA, et al. fMRI and MRS measures of neuroplasticity in the pharyngeal motor cortex. Neuroimage. 2015;117:1–10.

    Article  PubMed  Google Scholar 

  78. Rudroff T, Workman CD, Fietsam AC, Kamholz J. Response variability in transcranial direct current stimulation: why sex matters. Front Psychiatry. 2020;11:585.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Salehinejad MA, Ghanavati E, Kuo M-F, Nitsche MA. The role of circadian preferred time of day and sleep pressure in tDCS-induced neuroplasticity and associated cognition. Brain Stimul. 2023;16:203–4.

    Article  Google Scholar 

  80. Yu J, Wu Y, Wu B, Xu C, Cai J, Wen X, et al. Sleep patterns correlates with the efficacy of tDCS on post-stroke patients with prolonged disorders of consciousness. J Transl Med. 2022;20:601.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sun X, Doose J, Faller J, McIntosh JR, Saber GT, Huffman S, et al. Biomarkers predict the efficacy of closed-loop rTMS treatment for refractory depression. Research Square. 2023.

  82. Wischnewski M, Haigh ZJ, Shirinpour S, Alekseichuk I, Opitz A. The phase of sensorimotor mu and beta oscillations has the opposite effect on corticospinal excitability. Brain Stimul. 2022;15:1093–100.

    Article  PubMed  Google Scholar 

  83. Opitz A, Yeagle E, Thielscher A, Schroeder C, Mehta AD, Milham MP. On the importance of precise electrode placement for targeted transcranial electric stimulation. Neuroimage. 2018;181:560–7.

    Article  PubMed  Google Scholar 

  84. Datta A, Bansal V, Diaz J, Patel J, Reato D, Bikson M. Gyri-precise head model of transcranial direct current stimulation: improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimul. 2009;2:201–7. e1.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Soleimani G, Saviz M, Bikson M, Towhidkhah F, Kuplicki R, Paulus MP, et al. Group and individual level variations between symmetric and asymmetric DLPFC montages for tDCS over large scale brain network nodes. Sci Rep. 2021;11:1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Soleimani G, Kuplicki R, Camchong J, Opitz A, Paulus MP, Lim KO, et al. Are we really targeting and stimulating DLPFC by placing transcranial electrical stimulation (tES) electrodes over F3/F4? : Wiley Online Library; 2023. Report No.: 1065-9471.

  87. Soleimani G, Kupliki R, Bodurka J, Paulus MP, Ekhtiari H. How structural and functional MRI can inform dual-site tACS parameters: A case study in a clinical population and its pragmatic implications. Brain Stimul. 2022;15:337–51.

    Article  PubMed  Google Scholar 

  88. McCalley DM, Hanlon CA. Regionally specific gray matter volume is lower in alcohol use disorder: Implications for noninvasive Brain Stimulation treatment. Alcohol Clin Exp Res. 2021;45:1672–83.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Laakso I, Mikkonen M, Koyama S, Hirata A, Tanaka S. Can electric fields explain inter-individual variability in transcranial direct current stimulation of the motor cortex? Sci Rep. 2019;9:626.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Soleimani G, Joutsa J, Moussawi K, Siddiqi SH, Kuplicki R, Bikson M, et al. Converging evidence for frontopolar cortex as a target for neuromodulation in addiction treatment. Am J Psychiatry. 2024;181:100–14.

    Article  PubMed  Google Scholar 

  91. Soleimani G, Towhidkhah F, Saviz M, Ekhtiari H. Cortical morphology in cannabis use disorder: implications for transcranial direct current stimulation treatment. Basic Clin Neurosci. 2023;14:647.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Bikson M, Esmaeilpour Z, Adair D, Kronberg G, Tyler WJ, Antal A, et al. Transcranial electrical stimulation nomenclature. Brain Stimul. 2019;12:1349–66.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Schwippel T, Pupillo F, Feldman Z, Walker C, Townsend L, Rubinow D, et al. Closed-loop transcranial alternating current stimulation for the treatment of major depressive disorder: an open-label pilot study. Am J Psychiatry. 2024:appi. ajp. 20230838.

  94. Linkovski O, Naftalovich H, David M, Seror Y, Kalanthroff E. The effect of symptom-provocation on inhibitory control in obsessive-compulsive disorder patients is contingent upon chronotype and time of day. J Clin Med. 2023;12:4075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tendler A, Sisko E, Gersner R, Garrison S, Mayfield H, Sutton J, et al. Deep TMS for OCD with the H7 coil: community case series. Brain Stimulation. 2019;12:e140.

    Google Scholar 

  96. Sollmann N, Tanigawa N, Bulubas L, Sabih J, Zimmer C, Ringel F, et al. Clinical factors underlying the inter-individual variability of the resting motor threshold in navigated transcranial magnetic stimulation motor mapping. Brain Topogr. 2017;30:98–121.

    Article  PubMed  Google Scholar 

  97. Oathes DJ, Figueroa Gonzalez A, Grier J, Blaine C, Garcia SD, Linn KJ. Clinical response to fMRI-guided compared to non-image guided rTMS in depression and PTSD: a randomized trial. medRxiv. 2024. 2024.07. 29.24311191

  98. Zrenner C, Ziemann U. Closed-loop Brain Stimulation. Biol Psychiatry. 2024;95:545–52.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep Brain Stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.

    Article  CAS  PubMed  Google Scholar 

  100. Holtzheimer PE, Husain MM, Lisanby SH, Taylor SF, Whitworth LA, McClintock S, et al. Subcallosal cingulate deep Brain Stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry. 2017;4:839–49.

    Article  PubMed  Google Scholar 

  101. Del Mauro L, Vergallito A, Devoto F, Locatelli G, Hassan G, Romero Lauro LJ. Beyond the surface: Deep TMS efficacy in reducing craving in addictive disorders. a systematic review and meta-analysis. medRxiv. 2024:2024.11. 13.24317232.

  102. Li K, Qian L, Zhang C, Li R, Zeng J, Xue C, et al. Deep transcranial magnetic stimulation for treatment-resistant obsessive-compulsive disorder: A meta-analysis of randomized-controlled trials. J Psychiatr Res. 2024;180:96–102.

  103. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557:175–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bijsterbosch JD, Barker AT, Lee K-H, Woodruff PW. Where does transcranial magnetic stimulation (TMS) stimulate? Modelling of induced field maps for some common cortical and cerebellar targets. Med Biol Eng Comput. 2012;50:671–81.

    Article  PubMed  Google Scholar 

  105. Evans C, Bachmann C, Lee JS, Gregoriou E, Ward N, Bestmann S. Dose-controlled tDCS reduces electric field intensity variability at a cortical target site. Brain Stimulation. 2020;13:125–36.

    Article  PubMed  Google Scholar 

  106. Cole EJ, Stimpson KH, Bentzley BS, Gulser M, Cherian K, Tischler C, et al. Stanford accelerated intelligent neuromodulation therapy for treatment-resistant depression. Am J Psychiatry. 2020;177:716–26.

    Article  PubMed  Google Scholar 

  107. Schwippel T, Pupillo F, Feldman Z, Walker C, Townsend L, Rubinow D, et al. Closed-loop transcranial alternating current stimulation for the treatment of major depressive disorder: an open-label pilot study. Am J Psychiatry. 2024;181:842–5.

    Article  PubMed  Google Scholar 

  108. Morriss R, Briley PM, Webster L, Abdelghani M, Barber S, Bates P, et al. Connectivity-guided intermittent theta burst versus repetitive transcranial magnetic stimulation for treatment-resistant depression: a randomized controlled trial. Nat Med. 2024;30:403–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Xiao J, Ming Y, Li L, Huang X, Zhou Y, Ou J, et al. Personalized theta-burst stimulation enhances social skills in young minimally verbal children with autism: a double-blind randomized controlled trial. Biol Psychiatry. 2025. https://doi.org/10.1016/j.biopsych.2025.01.002.

Download references

Funding

Research reported in this publication was supported by the University of Minnesota’s MnDRIVE (Minnesota’s Discovery, Research and Innovation Economy) initiative awarded to GS and the University of Minnesota’s Medical Discovery Team on Addiction (MDTA). AO also acknowledges the support of the Minnesota Partnership for Biotechnology & Medical Genomics

Author information

Authors and Affiliations

Authors

Contributions

GS developed the idea under the supervision of HE. GS wrote the main manuscript based on inputs from HE, MAN, CH, AO, and KOL. GS developed Figure.

Corresponding authors

Correspondence to Ghazaleh Soleimani or Hamed Ekhtiari.

Ethics declarations

Competing interests

MAN is in the scientific advisory boards of Neuroelectrics, and Precisis. CH is a member of BrainsWay’s senior leadership (Nov. 2022) and has a financial interest in BrainsWay. She has previously served on an advisory board for Welcony-Magstim and as a consultant for BrainsWay and Roswell Park Cancer Center. AO is an inventor on patents and patent applications describing methods and devices for non-invasive Brain Stimulation. Research reported in this publication was supported by the University of Minnesota’s MnDRIVE (Minnesota’s Discovery, Research and Innovation Economy) initiative awarded to GS and the University of Minnesota’s Medical Discovery Team on Addiction (MDTA). AO also acknowledges the support of the Minnesota Partnership for Biotechnology & Medical Genomics. The remaining authors have nothing to disclose

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The copyright holder for this article was incorrectly given as ‘This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2025’ but should have been ‘The Author(s), under exclusive licence to American College of Neuropsychopharmacology 2025’.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimani, G., Nitsche, M.A., Hanlon, C.A. et al. Four dimensions of individualization in brain stimulation for psychiatric disorders: context, target, dose, and timing. Neuropsychopharmacol. 50, 857–870 (2025). https://doi.org/10.1038/s41386-025-02094-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-025-02094-3

This article is cited by

Search

Quick links