Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abnormal ventromedial-to-dorsolateral hierarchical topography of striatal circuits in cocaine use disorder and its modulations by brain stimulation

Abstract

Cocaine use disorder (CUD) has been linked to cortico-striatal dysfunctions, particularly within the prefrontal-striatal circuitry. However, previous studies have typically focused on discrete parcellations of the striatum, overlooking its continuous variations of neural organization. Moreover, while repetitive transcranial magnetic stimulation (rTMS) has shown benefits in CUD treatment, the neural effects of rTMS on striatal dysfunction in CUD remain poorly understood. Using connectome gradient-mapping techniques on three resting-state functional magnetic resonance imaging datasets, we derived the ventromedial-to-dorsolateral striatal functional topography. We identified specific alterations in this topography in the discovery cohort (41 CUD patients and 44 controls), validated findings in an independent cohort (53 CUD patients and 45 controls), and examined whether rTMS targeting the left dorsolateral prefrontal cortex (dlPFC) could normalize abnormalities in the rTMS-treatment cohort (44 patients). Across all datasets, we found a positive correlation between gradient variation and drug dependence severity in CUD. Compared to controls, CUD in both the discovery and replication cohorts exhibited elevated gradient values in the ventral striatum, while decreased values in the dorsal striatum were observed only in the discovery cohort. Furthermore, in the rTMS-treatment cohort, 5-Hz rTMS targeting the left dlPFC significantly normalized the aberrant gradient values in the ventral striatum, and these changes also related to cocaine craving changes. Overall, our study provides novel evidence of specific alterations in the ventromedial-to-dorsolateral functional topography of the striatum in CUD patients and highlights the impact of rTMS on striatal circuits through prefrontal modulation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gradient analysis, main questions and corresponding analytic workflow.
Fig. 2: Ventromedial-to-dorsolateral striatal functional gradient in patients with CUD and controls in the discovery cohort.
Fig. 3: Ventromedial-to-dorsolateral striatal gradient in patients with CUD and controls in the replication cohort.
Fig. 4: Gradient alterations in ventral striatum for the 2-week acute phase.

Similar content being viewed by others

Data availability

The datasets used in the discovery cohort and rTMS-treatment cohort are publicly available. The SUDMEX-CONN dataset is available from Zenodo (https://zenodo.org/record/5123331). The SUDMEX-TMS dataset is also available from Zenodo (https://zenodo.org/record/7126853). The data of replication cohort supporting the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Peacock A, Leung J, Larney S, Colledge S, Hickman M, Rehm J, et al. Global statistics on alcohol, tobacco and illicit drug use: 2017 status report. Addiction. 2018;113:1905–26.

    Article  PubMed  Google Scholar 

  2. Vonmoos M, Hulka LM, Preller KH, Minder F, Baumgartner MR, Quednow BB. Cognitive impairment in cocaine users is drug-induced but partially reversible: evidence from a longitudinal study. Neuropsychopharmacology. 2014;39:2200–10.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Potvin S, Stavro K, Rizkallah É, Pelletier J. Cocaine and cognition: a systematic quantitative review. J Addict Med. 2014;8:368–76.

    Article  PubMed  CAS  Google Scholar 

  4. Moeller SJ, Konova AB, Parvaz MA, Tomasi D, Lane RD, Fort C, Goldstein RZ. Functional, structural, and emotional correlates of impaired insight in cocaine addiction. JAMA Psychiatry. 2014;71:61–70.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wheeler RA, Aragona BJ, Fuhrmann KA, Jones JL, Day JJ, Cacciapaglia F, et al. Cocaine cues drive opposing context-dependent shifts in reward processing and emotional state. Biol Psychiatry. 2011;69:1067–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Herrero MJ, Domingo‐Salvany A, Torrens M, Brugal MT.& Investigators, I. Psychiatric comorbidity in young cocaine users: induced versus independent disorders. Addiction. 2008;103:284–93.

  7. Ford JD, Gelernter J, DeVoe JS, Zhang W, Weiss RD, Brady K, et al. Association of psychiatric and substance use disorder comorbidity with cocaine dependence severity and treatment utilization in cocaine-dependent individuals. Drug Alcohol Depend. 2009;99:193–203.

    Article  PubMed  Google Scholar 

  8. Wen X, Yue L, Du Z, Li L, Zhu Y, Yu D, Yuan K. Implications of neuroimaging findings in addiction. Psychoradiology. 2023;3:006.

    Article  Google Scholar 

  9. Hu Y, Salmeron BJ, Gu H, Stein EA, Yang Y. Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry. 2015;72:584–92.

    Article  PubMed  Google Scholar 

  10. Zhou F, Zimmermann K, Xin F, Scheele D, Dau W, Banger M, et al. Shifted balance of dorsal versus ventral striatal communication with frontal reward and regulatory regions in cannabis‐dependent males. Hum Brain Mapp. 2018;39:5062–73.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hu Y, Salmeron BJ, Krasnova IN, Gu H, Lu H, Bonci A, et al. Compulsive drug use is associated with imbalance of orbitofrontal-and prelimbic-striatal circuits in punishment-resistant individuals. Proc Natl Acad Sci. 2019;116:9066–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Haber SN. Corticostriatal circuitry. Dialog Clin Neurosci. 2016;18:7–21.

    Article  Google Scholar 

  13. Robbins TW, Gillan CM, Smith DG, de Wit S, Ersche KD. Neurocognitive endophenotypes of impulsivity and compulsivity: towards dimensional psychiatry. Trends Cogn Sci. 2012;16:81–91.

    Article  PubMed  Google Scholar 

  14. Volkow ND, Wang GJ, Fowler JS, Tomasi D, Telang F. Addiction: beyond dopamine reward circuitry. Proc Natl Acad Sci USA. 2011;108:15037–42. https://doi.org/10.1073/pnas.1010654108

    Article  PubMed  PubMed Central  Google Scholar 

  15. Haber SN, Fudge JL, McFarland NR. Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J Neurosci. 2000;20:2369–82.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Gordon EM, Laumann TO, Marek S, Newbold DJ, Hampton JM, Seider NA, et al. Individualized functional subnetworks connect human striatum and frontal cortex. Cereb Cortex. 2022;32:2868–84.

    Article  PubMed  Google Scholar 

  17. Devan BD, Hong NS, McDonald RJ. Parallel associative processing in the dorsal striatum: Segregation of stimulus–response and cognitive control subregions. Neurobiol Learn Mem. 2011;96:95–120.

    Article  PubMed  Google Scholar 

  18. Graff-Radford J, Williams L, Jones DT, Benarroch EE. Caudate nucleus as a component of networks controlling behavior. Neurology. 2017;89:2192–7.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Belin D, Jonkman S, Dickinson A, Robbins TW, Everitt BJ. Parallel and interactive learning processes within the basal ganglia: relevance for the understanding of addiction. Behav Brain Res. 2009;199:89–102.

    Article  PubMed  Google Scholar 

  20. Dalley JW, Fryer TD, Brichard L, Robinson ES, Theobald DE, Lääne K, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. science. 2007;315:1267–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Gottfried, JA. Neurobiology of sensation and reward. CRC Press: Boca Raton, FL; 2011.

  22. Goldstein RZ, Volkow ND. Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci. 2011;12:652–69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Zhang S, Li C-SR. Ventral striatal dysfunction in cocaine dependence–difference mapping for subregional resting state functional connectivity. Transl psychiatry. 2018;8:119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dong G-H, Dong H, Wang M, Zhang J, Zhou W, Du X, Potenza MN. Dorsal and ventral striatal functional connectivity shifts play a potential role in internet gaming disorder. Commun Biol. 2021;4:866.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marquand AF, Haak KV, Beckmann CF. Functional corticostriatal connection topographies predict goal-directed behaviour in humans. Nat Hum Behav. 2017;1:0146.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Oldehinkel M, Llera A, Faber M, Huertas I, Buitelaar JK, Bloem BR, et al. Mapping dopaminergic projections in the human brain with resting-state fMRI. Elife. 2022;11:e71846.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Oldehinkel M, Tiego J, Sabaroedin K, Chopra S, Francey SM, O'Donoghue B, et al. Gradients of striatal function in antipsychotic-free first-episode psychosis and schizotypy. Transl Psychiatry. 2023;13:128.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Haber SN. The primate basal ganglia: parallel and integrative networks. J Chem Neuroanat. 2003;26:317–30.

    Article  PubMed  Google Scholar 

  29. Haak KV, Marquand AF, Beckmann CF. Connectopic mapping with resting-state fMRI. Neuroimage. 2018;170:83–94.

    Article  PubMed  Google Scholar 

  30. Margulies DS, Ghosh SS, Goulas A, Falkiewicz M, Huntenburg JM, Langs G, et al. Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci. 2016;113:12574–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Huntenburg JM, Bazin P-L, Margulies DS. Large-scale gradients in human cortical organization. Trends Cogn Sci. 2018;22:21–31.

    Article  PubMed  Google Scholar 

  32. Yang S, Meng Y, Li J, Li B, Fan YS, Chen H, Liao W. The thalamic functional gradient and its relationship to structural basis and cognitive relevance. NeuroImage. 2020;218:116960.

    Article  PubMed  Google Scholar 

  33. Dong D, Luo C, Guell X, Wang Y, He H, Duan M, et al. Compression of cerebellar functional gradients in schizophrenia. Schizophr Bull. 2020;46:1282–95.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu X-S, Haak KV, Figa K, Vrijsen JN, Oldehinkel M, Mulders PCR, et al. Childhood adversity predicts striatal functional connectivity gradient changes after acute stress. Imaging Neurosci. 2024;2:1–13.

    Article  CAS  Google Scholar 

  35. Pettorruso M, Martinotti G, Santacroce R, Montemitro C, Fanella F, di Giannantonio M, rTMS stimulation g. rTMS reduces psychopathological burden and cocaine consumption in treatment-seeking subjects with cocaine use disorder: an open label, feasibility study. Front Psychiatry. 2019;10:621.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bolloni C, Panella R, Pedetti M, Frascella AG, Gambelunghe C, Piccoli T, et al. Bilateral transcranial magnetic stimulation of the prefrontal cortex reduces cocaine intake: a pilot study. Front psychiatry. 2016;7:133.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Garza-Villarreal EA, Alcala-Lozano R, Fernandez-Lozano S, Morelos-Santana E, Dávalos A, Villicaña V, et al. Clinical and functional connectivity outcomes of 5-Hz repetitive transcranial magnetic stimulation as an add-on treatment in cocaine use disorder: a double-blind randomized controlled trial. Biol Psychiatry: Cogn Neurosci Neuroimaging. 2021;6:745–57.

    PubMed  Google Scholar 

  38. Terraneo A, Terraneo A, Leggio L, Saladini M, Ermani M, Bonci A, et al. Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study. Eur Neuropsychopharmacol: J Eur Coll Neuropsychopharmacol. 2016;26:37–44. https://doi.org/10.1016/j.euroneuro.2015.11.011

    Article  CAS  Google Scholar 

  39. Diana M, Raij T, Melis M, Nummenmaa A, Leggio L, Bonci A. Rehabilitating the addicted brain with transcranial magnetic stimulation. Nat Rev Neurosci. 2017;18:685–93.

    Article  PubMed  CAS  Google Scholar 

  40. Mehta DD, Praecht A, Ward HB, Sanches M, Sorkhou M, Tang VM, et al. A systematic review and meta-analysis of neuromodulation therapies for substance use disorders. Neuropsychopharmacology. 2024;49:649–80.

    Article  PubMed  Google Scholar 

  41. Angeles-Valdez D, Rasgado-Toledo J, Issa-Garcia V, Balducci T, Villicaña V, Valencia A, et al. The Mexican magnetic resonance imaging dataset of patients with cocaine use disorder: SUDMEX CONN. Sci Data. 2022;9:133.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Geng X, Geng X, Hu Y, Gu H, Salmeron BJ, Adinoff B, et al. Salience and default mode network dysregulation in chronic cocaine users predict treatment outcome. Brain. 2017;140:1513–24. https://doi.org/10.1093/brain/awx036

    Article  PubMed  PubMed Central  Google Scholar 

  43. Angeles-Valdez D, Rasgado-Toledo J, Villicaña V, Davalos-Guzman A, Almanza C, Fajardo-Valdez A, et al. The Mexican dataset of a repetitive transcranial magnetic stimulation clinical trial on cocaine use disorder patients: SUDMEX TMS. Sci Data. 2024;11:408.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (MINI): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–33.

    PubMed  Google Scholar 

  45. Oquendo MA, Baca-Garcia E, Graver R, Morales M, Montalvan V, Mann JJ. Spanish adaptation of the Barratt impulsiveness scale (BIS-11). Eur J Psychiatry. 2001;15:147–155.

  46. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, et al. fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat methods. 2019;16:111–6.

    Article  PubMed  CAS  Google Scholar 

  47. Coifman RR, Lafon S, Lee AB, Maggioni M, Nadler B, Warner F, Zucker SW. Geometric diffusions as a tool for harmonic analysis and structure definition of data: Multiscale methods. Proc Natl Acad Sci. 2005;102:7432–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Guell X, Schmahmann JD, Gabrieli JD, Ghosh SS. Functional gradients of the cerebellum. elife. 2018;7:e36652.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Mano H, Kotecha G, Leibnitz K, Matsubara T, Sprenger C, Nakae A, et al. Classification and characterisation of brain network changes in chronic back pain: a multicenter study. Wellcome Open Res. 2018;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Smith SM, Nichols TE. Threshold-free cluster enhancement: addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage. 2009;44:83–98.

    Article  PubMed  Google Scholar 

  51. Pauli WM, O’Reilly RC, Yarkoni T, Wager TD. Regional specialization within the human striatum for diverse psychological functions. Proc Natl Acad Sci. 2016;113:1907–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD. Large-scale automated synthesis of human functional neuroimaging data. Nat methods. 2011;8:665–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Delgado MR. Reward‐related responses in the human striatum. Ann NY Acad Sci. 2007;1104:70–88.

    Article  PubMed  Google Scholar 

  54. Everitt BJ, Robbins TW. Drug addiction: updating actions to habits to compulsions ten years on. Annu Rev Psychol. 2016;67:23–50.

    Article  PubMed  Google Scholar 

  55. Wilcox CE, Teshiba TM, Merideth F, Ling J, Mayer AR. Enhanced cue reactivity and fronto-striatal functional connectivity in cocaine use disorders. Drug alcohol Depend. 2011;115:137–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Lench DH, DeVries W, Hanlon CA. The effect of task difficulty on motor performance and frontal-striatal connectivity in cocaine users. Drug alcohol Depend. 2017;173:178–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Hanlon CA, Wesley MJ, Stapleton JR, Laurienti PJ, Porrino LJ. The association between frontal–striatal connectivity and sensorimotor control in cocaine users. Drug Alcohol Depend. 2011;115:240–3.

    Article  PubMed  Google Scholar 

  58. Becker A, Kirsch M, Gerchen MF, Kiefer F, Kirsch P. Striatal activation and frontostriatal connectivity during non‐drug reward anticipation in alcohol dependence. Addict Biol. 2017;22:833–43.

    Article  PubMed  Google Scholar 

  59. Acikalin MY, Gorgolewski KJ, Poldrack RA. A coordinate-based meta-analysis of overlaps in regional specialization and functional connectivity across subjective value and default mode networks. Front Neurosci. 2017;11:1.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Morein-Zamir S, Simon Jones P, Bullmore ET, Robbins TW, Ersche KD. Prefrontal hypoactivity associated with impaired inhibition in stimulant-dependent individuals but evidence for hyperactivation in their unaffected siblings. Neuropsychopharmacology. 2013;38:1945–53.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Weinstein A, Livny A, Weizman A. Brain imaging studies on the cognitive, pharmacological and neurobiological effects of cannabis in humans: evidence from studies of adult users. Curr Pharm Des. 2016;22:6366–79.

    Article  PubMed  CAS  Google Scholar 

  62. Wrege J, Schmidt A, Walter A, Smieskova R, Bendfeldt K, Radue EW, et al. Effects of cannabis on impulsivity: a systematic review of neuroimaging findings. Curr Pharm Des. 2014;20:2126–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Yanes JA, Riedel MC, Ray KL, Kirkland AE, Bird RT, Boeving ER, et al. Neuroimaging meta-analysis of cannabis use studies reveals convergent functional alterations in brain regions supporting cognitive control and reward processing. J Psychopharmacol. 2018;32:283–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Camprodon JA, Martínez-Raga J, Alonso-Alonso M, Shih M-C, Pascual-Leone A. One session of high frequency repetitive transcranial magnetic stimulation (rTMS) to the right prefrontal cortex transiently reduces cocaine craving. Drug Alcohol Depend. 2007;86:91–94.

    Article  PubMed  Google Scholar 

  65. Politi E, Fauci E, Santoro A, Smeraldi E. Daily sessions of transcranial magnetic stimulation to the left prefrontal cortex gradually reduce cocaine craving. Am J Addict. 2008;17:345–6.

    Article  PubMed  Google Scholar 

  66. Lolli F, Salimova M, Scarpino M, Lanzo G, Cossu C, Bastianelli M, et al. A randomised, double-blind, sham-controlled study of left prefrontal cortex 15 Hz repetitive transcranial magnetic stimulation in cocaine consumption and craving. Plos One. 2021;16:e0259860.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Martinez D, Urban N, Grassetti A, Chang D, Hu MC, Zangen A, et al. Transcranial magnetic stimulation of medial prefrontal and cingulate cortices reduces cocaine self-administration: a pilot study. Front Psychiatry. 2018;9:80.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Martinotti G, Pettorruso M, Montemitro C, Spagnolo PA, Acuti Martellucci C, Di Carlo F, et al. Repetitive transcranial magnetic stimulation in treatment-seeking subjects with cocaine use disorder: a randomized, double-blind, sham-controlled trial. Prog Neuro-Psychopharmacol Biol Psychiatry. 2022;116:110513.

    Article  CAS  Google Scholar 

  69. Rapinesi C, Del Casale A, Di Pietro S, Ferri VR, Piacentino D, Sani G, et al. Add-on high frequency deep transcranial magnetic stimulation (dTMS) to bilateral prefrontal cortex reduces cocaine craving in patients with cocaine use disorder. Neurosci Lett. 2016;629:43–47.

    Article  PubMed  CAS  Google Scholar 

  70. Sanna A, Fattore L, Badas P, Corona G, Cocco V, Diana M. Intermittent theta burst stimulation of the prefrontal cortex in cocaine use disorder: a pilot study. Front Neurosci. 2019;13:765.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Steele VR, Maxwell AM, Ross TJ, Stein EA, Salmeron BJ. Accelerated intermittent theta-burst stimulation as a treatment for cocaine use disorder: a proof-of-concept study. Front Neurosci. 2019;13:1147.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Strafella AP, Paus T, Fraraccio M, Dagher A. Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain. 2003;126:2609–15.

    Article  PubMed  Google Scholar 

  73. Hanlon CA, Dowdle LT, Moss H, Canterberry M, George MS. Mobilization of medial and lateral frontal-striatal circuits in cocaine users and controls: an interleaved TMS/BOLD functional connectivity study. Neuropsychopharmacology. 2016;41:3032–41.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lee JH, Ribeiro EA, Kim J, Ko B, Kronman H, Jeong YH, et al. Dopaminergic regulation of nucleus accumbens cholinergic interneurons demarcates susceptibility to cocaine addiction. Biol psychiatry. 2020;88:746–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Carr DB, Sesack SR. Projections from the rat prefrontal cortex to the ventral tegmental area: target specificity in the synaptic associations with mesoaccumbens and mesocortical neurons. J Neurosci. 2000;20:3864–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Diana M. The dopamine hypothesis of drug addiction and its potential therapeutic value. Front Psychiatry. 2011;2:64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Strafella AP, Paus T, Barrett J, Dagher A. Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. J Neurosci. 2001;21:RC157.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Pettorruso M, di Giannantonio M, De Risio L, Martinotti G, Koob GF. A light in the darkness: repetitive transcranial magnetic stimulation (rTMS) to treat the hedonic dysregulation of addiction. J Addict Med. 2020;14:272–4.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bickel WK, Snider SE, Quisenberry AJ, Stein JS, Hanlon CA. Competing neurobehavioral decision systems theory of cocaine addiction: from mechanisms to therapeutic opportunities. Prog Brain Res. 2016;223:269–93.

    Article  PubMed  Google Scholar 

  80. Bickel WK, Miller ML, Yi R, Kowal BP, Lindquist DM, Pitcock JA. Behavioral and neuroeconomics of drug addiction: competing neural systems and temporal discounting processes. Drug Alcohol Depend. 2007;90:S85–S91.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E.A.G.-V. and colleagues for sharing data included in the discovery and rTMS-treatment cohorts. This work was partly supported by the National Natural Science Foundation of China (grant no. 31972906 to QH), and the Open Research Fund of the State Key Laboratory of Cognitive Neuroscience and Learning (grant no. CNLZD2102 to QH). XX and YY were supported by the Intramural Research Program of National Institute on Drug Abuse, National Institutes of Health, USA.

Author information

Authors and Affiliations

Contributions

RZ, and QH conceptualized and designed the work. RZ, and TZ preprocessed the data. RZ, and XX performed data analysis. RZ, XX, YH, YY and QH were responsible for the interpretation of the data. DD, TX, FZ, and YQ provided important suggestions during the formal analysis. RZ drafted the manuscript. DD and FZ provided suggestions during manuscript writing. YH, YY, and QH revised the paper. QH supervised the project.

Corresponding authors

Correspondence to Yihong Yang or Qinghua He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Xiao, X., Dong, D. et al. Abnormal ventromedial-to-dorsolateral hierarchical topography of striatal circuits in cocaine use disorder and its modulations by brain stimulation. Neuropsychopharmacol. 50, 1354–1363 (2025). https://doi.org/10.1038/s41386-025-02098-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41386-025-02098-z

Search

Quick links