Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

IMPAD1 and KDELR2 drive invasion and metastasis by enhancing Golgi-mediated secretion

Abstract

Non-small cell lung cancer (NSCLC) is the deadliest form of cancer worldwide, due in part to its proclivity to metastasize. Identifying novel drivers of invasion and metastasis holds therapeutic potential for the disease. We conducted a gain-of-function invasion screen, which identified two separate hits, IMPAD1 and KDELR2, as robust, independent drivers of lung cancer invasion and metastasis. Given that IMPAD1 and KDELR2 are known to be localized to the ER–Golgi pathway, we studied their common mechanism of driving in vitro invasion and in vivo metastasis and demonstrated that they enhance Golgi-mediated function and secretion. Therapeutically inhibiting matrix metalloproteases (MMPs) suppressed both IMPAD1- and KDELR2-mediated invasion. The hits from this unbiased screen and the mechanistic validation highlight Golgi function as one of the key cellular features altered during invasion and metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Novel screen identifies IMPAD1 and KDELR2 as drivers of lung cancer invasion and disease progression.
Fig. 2: IMPAD1 expression is sufficient to drive lung cancer invasion and metastasis.
Fig. 3: KDELR2 expression is sufficient to drive lung cancer invasion and metastasis.
Fig. 4: IMPAD1 or KDELR2 expression is necessary for invasive and metastatic ability of lung cancer cells.
Fig. 5: IMPAD1 and KDELR2 localize to the ER–Golgi pathway.
Fig. 6: IMPAD1 and KDELR2 independently induce Golgi-mediated secretion of proteases such as MMPs to drive lung cancer cell invasion.
Fig. 7: Working model for IMPAD1 and KDELR2 as part of the Golgi secretory cascade that regulate secretion of MMPs to drive NSCLC invasion and metastasis.

Similar content being viewed by others

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin. 2020;70:7–30.

    Google Scholar 

  2. Grzeskowiak CL, Kundu ST, Mo X, Ivanov AA, Zagorodna O, Lu H, et al. In vivo screening identifies GATAD2B as a metastasis driver in KRAS-driven lung cancer. Nat Commun. 2018;9:2732.

    Article  Google Scholar 

  3. Kundu ST, Grzeskowiak CL, Fradette JJ, Gibson LA, Rodriguez LB, Creighton CJ, et al. TMEM106B drives lung cancer metastasis by inducing TFEB-dependent lysosome synthesis and secretion of cathepsins. Nat Commun. 2018;9:2731.

    Article  Google Scholar 

  4. Frederick JP, Tafari AT, Wu SM, Megosh LC, Chiou ST, Irving RP, et al. A role for a lithium-inhibited Golgi nucleotidase in skeletal development and sulfation. Proc Natl Acad Sci USA. 2008;105:11605–12.

    Article  CAS  Google Scholar 

  5. Sohaskey ML, Yu J, Diaz MA, Plaas AH, Harland RM. JAWS coordinates chondrogenesis and synovial joint positioning. Development. 2008;135:2215–20.

    Article  CAS  Google Scholar 

  6. Vissers LE, Lausch E, Unger S, Campos-Xavier AB, Gilissen C, Rossi A, et al. Chondrodysplasia and abnormal joint development associated with mutations in IMPAD1, encoding the Golgi-resident nucleotide phosphatase, gPAPP. Am J Hum Genet. 2011;88:608–15.

    Article  CAS  Google Scholar 

  7. Parris TZ, Kovacs A, Hajizadeh S, Nemes S, Semaan M, Levin M, et al. Frequent MYC coamplification and DNA hypomethylation of multiple genes on 8q in 8p11-p12-amplified breast carcinomas. Oncogenesis. 2014;3:e95.

    Article  CAS  Google Scholar 

  8. Plasterer C, Tsaih SW, Lemke A, Schilling R, Dwinell M, Rau A, et al. Identification of a rat mammary tumor risk locus that is syntenic with the commonly amplified 8q12.1 and 8q22.1 regions in human breast cancer patients. G3: Genes Genom Genet. 2019;9:1739–43.

    Article  CAS  Google Scholar 

  9. Cancino J, Jung JE, Luini A. Regulation of Golgi signaling and trafficking by the KDEL receptor. Histochem Cell Biol. 2013;140:395–405.

    Article  CAS  Google Scholar 

  10. Capitani M, Sallese M. The KDEL receptor: New functions for an old protein. Febs Lett. 2009;583:3863–71.

    Article  CAS  Google Scholar 

  11. Wiersma VR, Michalak M, Abdullah TM, Bremer E, Eggleton P. Mechanisms of translocation of ER chaperones to the cell surface and immunomodulatory roles in cancer and autoimmunity. Front Oncol. 2015;5:7.

    Article  Google Scholar 

  12. Ruggiero C, Grossi M, Fragassi G, Di Campli A, Di Ilio C, Luini A, et al. The KDEL receptor signalling cascade targets focal adhesion kinase on focal adhesions and invadopodia. Oncotarget. 2018;9:10228–46.

    Article  Google Scholar 

  13. Ruggiero C, Fragassi G, Grossi M, Picciani B, Di Martino R, Capitani M, et al. A Golgi-based KDELR-dependent signalling pathway controls extracellular matrix degradation. Oncotarget. 2015;6:3375–93.

    Article  Google Scholar 

  14. Gibbons DL, Lin W, Creighton CJ, Rizvi ZH, Gregory PA, Goodall GJ, et al. Contextual extracellular cues promote tumor cell EMT and metastasis by regulating miR-200 family expression. Genes Dev. 2009;23:2140–51.

    Article  CAS  Google Scholar 

  15. Gibbons DL, Lin W, Creighton CJ, Zheng S, Berel D, Yang Y, et al. Expression signatures of metastatic capacity in a genetic mouse model of lung adenocarcinoma. PLoS ONE. 2009;4:e5401.

    Article  Google Scholar 

  16. Ahn YH, Gibbons DL, Chakravarti D, Creighton CJ, Rizvi ZH, Adams HP, et al. ZEB1 drives prometastatic actin cytoskeletal remodeling by downregulating miR-34a expression. J Clin Investig. 2012;122:3170–83.

    Article  CAS  Google Scholar 

  17. Kundu ST, Byers LA, Peng DH, Roybal JD, Diao L, Wang J, et al. The miR-200 family and the miR-183~96~182 cluster target Foxf2 to inhibit invasion and metastasis in lung cancers. Oncogene. 2016;35:173–86.

    Article  CAS  Google Scholar 

  18. Ochieng JK, Kundu ST, Bajaj R, Rodriguez BL, Fradette JJ, Gibbons DL. MBIP (MAP3K12 binding inhibitory protein) drives NSCLC metastasis by JNK-dependent activation of MMPs. Oncogene. 2020; in revision.

  19. Gyorffy B, Surowiak P, Budczies J, Lanczky A. Online survival analysis software to assess the prognostic value of biomarkers using transcriptomic data in non-small-cell lung cancer. PLoS ONE. 2013;8:e82241.

    Article  Google Scholar 

  20. Uhlen M, Zhang C, Lee S, Sjostedt E, Fagerberg L, Bidkhori G, et al. A pathology atlas of the human cancer transcriptome.Science. 2017;357:eaan2507.

    Article  Google Scholar 

  21. Uhlen M, Fagerberg L, Hallstrom BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Tissue-based map of the human proteome. Science. 2015;347:1260419.

    Article  Google Scholar 

  22. Halberg N, Sengelaub CA, Navrazhina K, Molina H, Uryu K, Tavazoie SF. PITPNC1 recruits RAB1B to the Golgi network to drive malignant secretion. Cancer Cell. 2016;29:339–53.

    Article  CAS  Google Scholar 

  23. Tan XC, Banerjee P, Guo HF, Ireland S, Pankova D, Ahn YH, et al. Epithelial-to-mesenchymal transition drives a pro-metastatic Golgi compaction process through scaffolding protein PAQR11. J Clin Invest. 2017;127:117–31.

    Article  Google Scholar 

  24. Nakamura N, Rabouille C, Watson R, Nilsson T, Hui N, Slusarewicz P, et al. Characterization of a cis-Golgi matrix protein, GM130. J Cell Biol. 1995;131(6 Pt 2):1715–26.

    Article  CAS  Google Scholar 

  25. Bershadsky AD, Futerman AH. Disruption of the Golgi-apparatus by Brefeldin-a blocks cell polarization and inhibits directed cell-migration. Proc Natl Acad Sci USA. 1994;91:5686–9.

    Article  CAS  Google Scholar 

  26. Taylor A, Melton JV, Herrero LJ, Thaa B, Karo-Astover L, Gage PW, et al. Effects of an in-frame deletion of the 6k gene locus from the genome of Ross River Virus. J Virol. 2016;90:4150–9.

    Article  CAS  Google Scholar 

  27. Sbai O, Ferhat L, Bernard A, Gueye Y, Ould-Yahoui A, Thiolloy S, et al. Vesicular trafficking and secretion of matrix metalloproteinases-2, -9 and tissue inhibitor of metalloproteinases-1 in neuronal cells. Mol Cell Neurosci. 2008;39:549–68.

    Article  CAS  Google Scholar 

  28. Viotti C. ER to Golgi-dependent protein secretion: the conventional pathway. Methods Mol Biol. 2016;1459:3–29.

    Article  CAS  Google Scholar 

  29. Friedl P, Locker J, Sahai E, Segall JE. Classifying collective cancer cell invasion. Nat Cell Biol. 2012;14:777–83.

    Article  Google Scholar 

  30. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  Google Scholar 

  31. Steeg PS, Theodorescu D. Metastasis: a therapeutic target for cancer. Nat Clin Pr Oncol. 2008;5:206–19.

    Article  CAS  Google Scholar 

  32. Brandizzi F, Barlowe C. Organization of the ER-Golgi interface for membrane traffic control. Nat Rev Mol Cell Biol. 2013;14:382–92.

    Article  CAS  Google Scholar 

  33. Feizi A, Gatto F, Uhlen M, Nielsen J. Human protein secretory pathway genes are expressed in a tissue-specific pattern to match processing demands of the secretome. NPJ Syst Biol Appl. 2017;3:22.

    Article  Google Scholar 

  34. Tan XC, Banerjee P, Pham EA, Rutaganira FUN, Basu K, Bota-Rabassedas N, et al. PI4KIII beta is a therapeutic target in chromosome 1q-amplified lung adenocarcinoma. Sci Transl Med. 2020;12:eaax3772.

  35. Rodriguez-Boulan E, Macara IG. Organization and execution of the epithelial polarity programme. Nat Rev Mol Cell Bio. 2014;15:225–42.

    Article  CAS  Google Scholar 

  36. Handler JS. Overview of epithelial polarity. Annu Rev Physiol. 1989;51:729–40.

    Article  CAS  Google Scholar 

  37. Paolino M, Choidas A, Wallner S, Pranjic B, Uribesalgo I, Loeser S, et al. The E3 ligase Cbl-b and TAM receptors regulate cancer metastasis via natural killer cells. Nature. 2014;507:508–12.

    Article  CAS  Google Scholar 

  38. Xu L, Zhang Y, Qu X, Che X, Guo T, Cai Y, et al. E3 ubiquitin ligase Cbl-b prevents tumor metastasis by maintaining the epithelial Phenotype in multiple drug-resistant gastric and breast cancer cells. Neoplasia. 2017;19:374–82.

    Article  CAS  Google Scholar 

  39. Wu X, Yan Q, Zhang Z, Du G, Wan X. Acrp30 inhibits leptin-induced metastasis by downregulating the JAK/STAT3 pathway via AMPK activation in aggressive SPEC-2 endometrial cancer cells. Oncol Rep. 2012;27:1488–96.

    Article  CAS  Google Scholar 

  40. Tang CH, Lu ME. Adiponectin increases motility of human prostate cancer cells via adipoR, p38, AMPK, and NF-kappaB pathways. Prostate. 2009;69:1781–9.

    Article  CAS  Google Scholar 

  41. Bogdanov A, Moiseenko F, Dubina M. Abnormal expression of ATP1A1 and ATP1A2 in breast cancer. F1000Research. 2017;6:10.

    Article  Google Scholar 

  42. Khajah MA, Mathew PM, Luqmani YA. Na+/K+ ATPase activity promotes invasion of endocrine resistant breast cancer cells. PLoS ONE. 2018;13:e0193779.

    Article  Google Scholar 

  43. Pangon L, Ng I, Giry-Laterriere M, Currey N, Morgan A, Benthani F, et al. JRK is a positive regulator of β-catenin transcriptional activity commonly overexpressed in colon, breast and ovarian cancer. Oncogene 2016;35:2834–41.

    Article  CAS  Google Scholar 

  44. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp. 2014;51046.

  45. Martinotti S, Ranzato E. Scratch wound healing assay. Methods Mol Biol. 2020:225–9.

Download references

Acknowledgements

This work was supported by the DoD CDMRP Lung cancer research award W81XWH-12–16294 (DLG and KLS), NIH/NCI K08 CA151651, NIH R37CA214609, the MD Anderson Physician-Scientist Program and Rexanna’s Foundation for Fighting Lung Cancer (DLG). DLG is an R. Lee Clark Fellow of the University of Texas MD Anderson Cancer Center, supported by the Jeane F. Shelby Scholarship Fund. The work was also supported by the generous philanthropic contributions to The University of Texas MD Anderson Lung Cancer Moon Shots Program. We would like to thank the UTMDACC Department of Veterinary Medicine Facility.

Author information

Authors and Affiliations

Authors

Contributions

Study conceptualization, design, and execution of project: RB, STK, KLS, and DLG. Data acquisition and statistical analysis: RB, STK, CLG, and CJC. Analysis, interpretation, and representation of data: RB and STK. Manuscript writing, critical revision, and preparation of figures and tables: RB, STK, and DLG. Overall supervision and execution: STK and DLG.

Corresponding authors

Correspondence to Samrat T. Kundu or Don L. Gibbons.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajaj, R., Kundu, S.T., Grzeskowiak, C.L. et al. IMPAD1 and KDELR2 drive invasion and metastasis by enhancing Golgi-mediated secretion. Oncogene 39, 5979–5994 (2020). https://doi.org/10.1038/s41388-020-01410-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-020-01410-z

This article is cited by

Search

Quick links