Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Her2 promotes early dissemination of breast cancer by suppressing the p38 pathway through Skp2-mediated proteasomal degradation of Tpl2

A Correction to this article was published on 10 February 2021

This article has been updated

Abstract

While mechanisms for metastasis were extensively studied in cancer cells from patients with detectable tumors, pathways underlying metastatic dissemination from early lesions before primary tumors appear are poorly understood. Her2 promotes breast cancer early dissemination by suppressing p38, but how Her2 downregulates p38 is unclear. Here, we demonstrate that in early lesion breast cancer models, Her2 inhibits p38 by inducing Skp2 through Akt-mediated phosphorylation, which promotes ubiquitination and proteasomal degradation of Tpl2, a p38 MAP3K. The early disseminating cells are Her2+Skp2highTpl2lowp-p38lowE-cadherinlow in the MMTV-Her2 breast cancer model. In human breast carcinoma, high Skp2 and low Tpl2 expression are associated with the Her2+ status; Tpl2 expression positively correlates with that of activated p38; Skp2 expression negatively correlates with that of Tpl2 and activated p38. Moreover, the Her2-Akt-Skp2-Tpl2-p38 axis plays a key role in the disseminating phenotypes in early lesion breast cancer cells; inhibition of Tpl2 enhances early dissemination in vivo. These findings identify the Her2-Akt-Skp2-Tpl2-p38 cascade as a novel mechanism mediating breast cancer early dissemination and a potential target for novel therapies targeting early metastatic dissemination.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduced Tpl2 levels correlate with Her2+ status and reduced p38 activation in cell and mouse models of early lesion breast cancer and early-lesion human breast cancer tissues, and with increased Skp2 expression in early-lesion human breast cancer tissues.
Fig. 2: Her2 mediates migration, invasion, and EMT by downregulating Tpl2 expression in mammary epithelial cells isolated from 14 to 18-week-old MMTV-Her2 mice with early lesions.
Fig. 3: Her2 reduces Tpl2 protein expression through Skp2-mediated ubiquitination and proteasomal degradation.
Fig. 4: Skp2 mediates Her2-induced Tpl2 and p38 suppression and migration, invasion and EMT in early lesion breast cancer cells.
Fig. 5: Skp2 promotes migration, invasion and EMT by suppressing Tpl2 in Her2+ early lesion breast cancer cells.
Fig. 6: Her2 induces Skp2 expression and function through Akt-mediated phosphorylation.
Fig. 7: Pharmacological inhibition of Tpl2 suppresses the p38 pathway and promotes the disseminating phenotypes in Her2+ early lesion breast cancer cells and enhances early dissemination in vivo in the MMTV-Her2 mouse model.

Similar content being viewed by others

Change history

References

  1. Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer. 2003;3:453–8.

    Article  CAS  PubMed  Google Scholar 

  2. Narod SA, Iqbal J, Giannakeas V, Sopik V, Sun P. Breast cancer mortality after a diagnosis of ductal carcinoma in situ. JAMA Oncol. 2015;1:888–96.

    Article  PubMed  Google Scholar 

  3. Pantel K, Brakenhoff RH. Dissecting the metastatic cascade. Nat Rev Cancer. 2004;4:448–56.

    Article  CAS  PubMed  Google Scholar 

  4. Abbruzzese JL, Abbruzzese MC, Hess KR, Raber MN, Lenzi R, Frost P. Unknown primary carcinoma: natural history and prognostic factors in 657 consecutive patients. J Clin Oncol. 1994;12:1272–80.

    Article  CAS  PubMed  Google Scholar 

  5. Riethmuller G, Klein CA. Early cancer cell dissemination and late metastatic relapse: clinical reflections and biological approaches to the dormancy problem in patients. Semin Cancer Biol. 2001;11:307–11.

    Article  CAS  PubMed  Google Scholar 

  6. Lopez-Lazaro M. The migration ability of stem cells can explain the existence of cancer of unknown primary site. Rethinking metastasis. Oncoscience. 2015;2:467–75.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Eyles J, Puaux AL, Wang X, Toh B, Prakash C, Hong M, et al. Tumor cells disseminate early, but immunosurveillance limits metastatic outgrowth, in a mouse model of melanoma. J Clin Invest. 2010;120:2030–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kang Y, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients. Cancer Cell. 2013;23:573–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009;139:871–90.

    Article  CAS  PubMed  Google Scholar 

  10. Vleminckx K, Vakaet L Jr, Mareel M, Fiers W, van Roy F. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell. 1991;66:107–19.

    Article  CAS  PubMed  Google Scholar 

  11. Aberle H, Schwartz H, Kemler R. Cadherin-catenin complex: protein interactions and their implications for cadherin function. J Cell Biochem. 1996;61:514–23.

    Article  CAS  PubMed  Google Scholar 

  12. Behrens J, Vakaet L, Friis R, Winterhager E, Van Roy F, Mareel MM, et al. Loss of epithelial differentiation and gain of invasiveness correlates with tyrosine phosphorylation of the E-cadherin/beta-catenin complex in cells transformed with a temperature-sensitive v-SRC gene. J Cell Biol. 1993;120:757–66.

    Article  CAS  PubMed  Google Scholar 

  13. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303:1483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Enslen H, Raingeaud J, Davis RJ. Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem. 1998;273:1741–8.

    Article  CAS  PubMed  Google Scholar 

  15. Cuadrado A, Nebreda AR. Mechanisms and functions of p38 MAPK signalling. Biochem J. 2010;429:403–17.

    Article  CAS  PubMed  Google Scholar 

  16. Shi Y, Gaestel M. In the cellular garden of forking paths: how p38 MAPKs signal for downstream assistance. Biol Chem. 2002;383:1519–36.

    Article  CAS  PubMed  Google Scholar 

  17. Gantke T, Sriskantharajah S, Sadowski M, Ley SC. IkappaB kinase regulation of the TPL-2/ERK MAPK pathway. Immunol Rev. 2012;246:168–82.

    Article  PubMed  Google Scholar 

  18. Salmeron A, Ahmad TB, Carlile GW, Pappin D, Narsimhan RP, Ley SC. Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J. 1996;15:817–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH, et al. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell. 2000;103:1071–83.

    Article  CAS  PubMed  Google Scholar 

  20. Pattison MJ, Mitchell O, Flynn HR, Chen CS, Yang HT, Ben-Addi H, et al. TLR and TNF-R1 activation of the MKK3/MKK6-p38alpha axis in macrophages is mediated by TPL-2 kinase. Biochem J. 2016;473:2845–61.

    Article  CAS  PubMed  Google Scholar 

  21. Senger K, Pham VC, Varfolomeev E, Hackney JA, Corzo CA, Collier J, et al. The kinase TPL2 activates ERK and p38 signaling to promote neutrophilic inflammation. Sci Signal. 2017;10.

  22. Gong J, Fang C, Zhang P, Wang PX, Qiu Y, Shen LJ, et al. Tumor progression locus 2 in hepatocytes potentiates both liver and systemic metabolic disorders in mice. Hepatology. 2019;69:524–44.

    Article  CAS  PubMed  Google Scholar 

  23. Beinke S, Robinson MJ, Hugunin M, Ley SC. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol Cell Biol. 2004;24:9658–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dodhiawala PB, Khurana N, Zhang D, Cheng Y, Li L, Wei Q, et al. TPL2 enforces RAS-induced inflammatory signaling and is activated by point mutations. J Clin Invest. 2020;130:4771–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cho J, Melnick M, Solidakis GP, Tsichlis PN. Tpl2 (tumor progression locus 2) phosphorylation at Thr290 is induced by lipopolysaccharide via an Ikappa-B Kinase-beta-dependent pathway and is required for Tpl2 activation by external signals. J Biol Chem. 2005;280:20442–8.

    Article  CAS  PubMed  Google Scholar 

  26. Bulavin DV, Fornace AJ Jr. p38 MAP kinase’s emerging role as a tumor suppressor. Adv Cancer Res. 2004;92:95–118.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng H, Seit-Nebi A, Han X, Aslanian A, Tat J, Liao R, et al. A posttranslational modification cascade involving p38, Tip60, and PRAK mediates oncogene-induced senescence. Mol Cell. 2013;50:699–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ellinger-Ziegelbauer H, Kelly K, Siebenlist U. Cell cycle arrest and reversion of Ras-induced transformation by a conditionally activated form of mitogen-activated protein kinase kinase kinase 3. Mol Cell Biol. 1999;19:3857–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. She QB, Bode AM, Ma WY, Chen NY, Dong Z. Resveratrol-induced activation of p53 and apoptosis is mediated by extracellular-signal-regulated protein kinases and p38 kinase. Cancer Res. 2001;61:1604–10.

    CAS  PubMed  Google Scholar 

  30. Wen HC, Avivar-Valderas A, Sosa MS, Girnius N, Farias EF, Davis RJ, et al. p38alpha signaling induces anoikis and lumen formation during mammary morphogenesis. Sci Signal. 2011;4:ra34.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Huang S, New L, Pan Z, Han J, Nemerow GR. Urokinase plasminogen activator/urokinase-specific surface receptor expression and matrix invasion by breast cancer cells requires constitutive p38alpha mitogen-activated protein kinase activity. J Biol Chem. 2000;275:12266–72.

    Article  CAS  PubMed  Google Scholar 

  32. Anwar T, Arellano-Garcia C, Ropa J, Chen YC, Kim HS, Yoon E, et al. p38-mediated phosphorylation at T367 induces EZH2 cytoplasmic localization to promote breast cancer metastasis. Nat Commun. 2018;9:2801.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Wu MZ, Chen SF, Nieh S, Benner C, Ger LP, Jan CI, et al. Hypoxia drives breast tumor malignancy through a TET-TNFalpha-p38-MAPK signaling axis. Cancer Res. 2015;75:3912–24.

    Article  CAS  PubMed  Google Scholar 

  34. Harper KL, Sosa MS, Entenberg D, Hosseini H, Cheung JF, Nobre R, et al. Mechanism of early dissemination and metastasis in Her2(+) mammary cancer. Nature. 2016;540:588–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kim G, Khanal P, Kim JY, Yun HJ, Lim SC, Shim JH, et al. COT phosphorylates prolyl-isomerase Pin1 to promote tumorigenesis in breast cancer. Mol Carcinog. 2015;54:440–8.

    Article  CAS  PubMed  Google Scholar 

  36. Kim K, Kim G, Kim JY, Yun HJ, Lim SC, Choi HS. Interleukin-22 promotes epithelial cell transformation and breast tumorigenesis via MAP3K8 activation. Carcinogenesis. 2014;35:1352–61.

    Article  CAS  PubMed  Google Scholar 

  37. Decicco-Skinner KL, Trovato EL, Simmons JK, Lepage PK, Wiest JS. Loss of tumor progression locus 2 (tpl2) enhances tumorigenesis and inflammation in two-stage skin carcinogenesis. Oncogene. 2011;30:389–97.

    Article  CAS  PubMed  Google Scholar 

  38. Gkirtzimanaki K, Gkouskou KK, Oleksiewicz U, Nikolaidis G, Vyrla D, Liontos M, et al. TPL2 kinase is a suppressor of lung carcinogenesis. Proc Natl Acad Sci USA. 2013;110:E1470–1479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS. ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol. 2001;3:785–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Husemann Y, Geigl JB, Schubert F, Musiani P, Meyer M, Burghart E, et al. Systemic spread is an early step in breast cancer. Cancer Cell. 2008;13:58–68.

    Article  PubMed  Google Scholar 

  41. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Xu L, Chen S, Bergan RC. MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene. 2006;25:2987–98.

    Article  CAS  PubMed  Google Scholar 

  43. Han Y, Zhang L, Wang W, Li J, Song M. Livin promotes the progression and metastasis of breast cancer through the regulation of epithelialmesenchymal transition via the p38/GSK3beta pathway. Oncol Rep. 2017;38:3574–82.

    CAS  PubMed  Google Scholar 

  44. Yan MH, Hao JH, Zhang XG, Shen CC, Zhang DJ, Zhang KS, et al. Advancement in TPL2-regulated innate immune response. Immunobiology. 2019;224:383–7.

    Article  CAS  PubMed  Google Scholar 

  45. Slack DN, Seternes OM, Gabrielsen M, Keyse SM. Distinct binding determinants for ERK2/p38alpha and JNK map kinases mediate catalytic activation and substrate selectivity of map kinase phosphatase-1. J Biol Chem. 2001;276:16491–500.

    Article  CAS  PubMed  Google Scholar 

  46. Candas D, Lu CL, Fan M, Chuang FY, Sweeney C, Borowsky AD, et al. Mitochondrial MKP1 is a target for therapy-resistant HER2-positive breast cancer cells. Cancer Res. 2014;74:7498–509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mamillapalli R, Gavrilova N, Mihaylova VT, Tsvetkov LM, Wu H, Zhang H, et al. PTEN regulates the ubiquitin-dependent degradation of the CDK inhibitor p27(KIP1) through the ubiquitin E3 ligase SCF(SKP2). Curr Biol. 2001;11:263–7.

    Article  CAS  PubMed  Google Scholar 

  48. Gao D, Inuzuka H, Tseng A, Chin RY, Toker A, Wei W. Phosphorylation by Akt1 promotes cytoplasmic localization of Skp2 and impairs APCCdh1-mediated Skp2 destruction. Nat Cell Biol. 2009;11:397–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lin HK, Wang G, Chen Z, Teruya-Feldstein J, Liu Y, Chan CH, et al. Phosphorylation-dependent regulation of cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol. 2009;11:420–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Chan CH, Li CF, Yang WL, Gao Y, Lee SW, Feng Z, et al. The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell. 2012;149:1098–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ruiz-Saenz A, Dreyer C, Campbell MR, Steri V, Gulizia N, Moasser MM. HER2 amplification in tumors activates PI3K/Akt signaling independent of HER3. Cancer Res. 2018;78:3645–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wisinski KB, Tevaarwerk AJ, Burkard ME, Rampurwala M, Eickhoff J, Bell MC, et al. Phase I study of an AKT Inhibitor (MK-2206) combined with lapatinib in adult solid tumors followed by dose expansion in advanced HER2+ breast cancer. Clin Cancer Res. 2016;22:2659–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Krcova Z, Ehrmann J, Krejci V, Eliopoulos A, Kolar Z. Tpl-2/Cot and COX-2 in breast cancer. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2008;152:21–25.

    Article  PubMed  Google Scholar 

  54. del Barco Barrantes I, Nebreda AR. Roles of p38 MAPKs in invasion and metastasis. Biochem Soc Trans. 2012;40:79–84.

    Article  PubMed  Google Scholar 

  55. Sosa MS, Avivar-Valderas A, Bragado P, Wen HC, Aguirre-Ghiso JA. ERK1/2 and p38alpha/beta signaling in tumor cell quiescence: opportunities to control dormant residual disease. Clin Cancer Res. 2011;17:5850–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chan CH, Lee SW, Wang J, Lin HK. Regulation of Skp2 expression and activity and its role in cancer progression. ScientificWorldJournal. 2010;10:1001–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Weidensdorfer D, Stohr N, Baude A, Lederer M, Kohn M, Schierhorn A, et al. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA. 2009;15:104–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kato H, Asamitsu K, Sun W, Kitajima S, Yoshizawa-Sugata N, Okamoto T, et al. Cancer-derived UTX TPR mutations G137V and D336G impair interaction with MLL3/4 complexes and affect UTX subcellular localization. Oncogene. 2020;39:3322–35.

    Article  CAS  PubMed  Google Scholar 

  59. Wei W, Shin YS, Xue M, Matsutani T, Masui K, Yang H, et al. Single-cell phosphoproteomics resolves adaptive signaling dynamics and informs targeted combination therapy in glioblastoma. Cancer Cell. 2016;29:563–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Cell Engineering and Tumor Tissue and Pathology Shared Resources of WFBCCC for support. This study was supported by NIH/NCI grants CA131231, CA172115, and P30CA012197 (PS) and Bilateral Inter-Governmental S&T Cooperation Project grants from Ministry of Science and Technology of China (81972882 and 2018YFE0114300) (RX). PS is an Anderson Oncology Research Professor.

Author information

Authors and Affiliations

Authors

Contributions

GW, JW, RX, and PS conceived and designed the study. GW, JW, MD, SH, AC, and DW executed the experiments; GW, JW, AC, KL, SS, HL, HL, and PS analyzed and interpreted the data. GW, JW, HL, HL, RX, and PS wrote and/or reviewed the manuscript.

Corresponding authors

Correspondence to Rong Xiang or Peiqing Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wang, J., Chang, A. et al. Her2 promotes early dissemination of breast cancer by suppressing the p38 pathway through Skp2-mediated proteasomal degradation of Tpl2. Oncogene 39, 7034–7050 (2020). https://doi.org/10.1038/s41388-020-01481-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-020-01481-y

This article is cited by

Search

Quick links