Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bptf determines oncogenic addiction in aggressive B-cell lymphomas

Abstract

Chromatin remodeling factors contribute to establish aberrant gene expression programs in cancer cells and therefore represent valuable targets for therapeutic intervention. BPTF (Bromodomain PhD Transcription Factor), a core subunit of the nucleosome remodeling factor (NURF), modulates c-MYC oncogenic activity in pancreatic cancer. Here, we analyze the role of BPTF in c-MYC-driven B-cell lymphomagenesis using the Eμ-Myc transgenic mouse model of aggressive B-cell lymphoma. We find that BPTF is required for normal B-cell differentiation without evidence of haploinsufficiency. In contrast, deletion of one Bptf allele is sufficient to delay lymphomagenesis in Eμ-Myc mice. Tumors arising in a Bptf heterozygous background display decreased c-MYC levels and pathway activity, together with increased activation of the NF-κB pathway, a molecular signature characteristic of human diffuse large B-cell lymphoma (DLBCL). In human B-cell lymphoma samples, we find a strong correlation between BPTF and c-MYC mRNA and protein levels, together with an anti-correlation between BPTF and NF-κB pathway activity. Our results indicate that BPTF is a relevant therapeutic target in B-cell lymphomas and that, upon its inhibition, cells acquire distinct oncogenic dependencies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Deletion of one Bptf allele delays lymphoma development and progression in Eμ-Myc mice.
Fig. 2: Deletion of one Bptf allele does not impair proliferation, survival, or homing of pre-leukemic BM cells.
Fig. 3: Deletion of one Bptf allele favors the development of lymphomas with low c-MYC and E2F, but high NF-κB, activation signatures.
Fig. 4: BPTF levels show a positive correlation with c-MYC and E2F, and a negative correlation with NF-κB, pathway activity in human lymphomas.

Similar content being viewed by others

References

  1. Gonzalez-Perez A, Jene-Sanz A, Lopez-Bigas N. The mutational landscape of chromatin regulatory factors across 4,623 tumor samples. Genome Biol. 2013;14:r106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Malysheva V, Mendoza-Parra MA, Saleem MA, Gronemeyer H. Reconstruction of gene regulatory networks reveals chromatin remodelers and key transcription factors in tumorigenesis. Genome Med. 2016;8:57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Pfister SX, Ashworth A. Marked for death: targeting epigenetic changes in cancer. Nat Rev Drug Discov. 2017;16:241–63.

    Article  CAS  PubMed  Google Scholar 

  4. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nesbit CE, Tersak JM, Prochownik EV. MYC oncogenes and human neoplastic disease. Oncogene. 1999;18:3004–16.

    Article  CAS  PubMed  Google Scholar 

  6. Bishop PC, Rao VK, Wilson WH. Burkitt’s lymphoma: molecular pathogenesis and treatment. Cancer Investig. 2000;18:574–83.

    Article  CAS  Google Scholar 

  7. Mertz JA, Conery AR, Bryant BM, Sandy P, Balasubramanian S, Mele DA, et al. Targeting MYC dependence in cancer by inhibiting BET bromodomains. Proc Natl Acad Sci USA. 2011;108:16669–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403:503–11.

    Article  CAS  PubMed  Google Scholar 

  9. Lunning MA, Green MR. Mutation of chromatin modifiers; an emerging hallmark of germinal center B-cell lymphomas. Blood Cancer J. 2015;5:e361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature. 2011;476:298–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li H, Ilin S, Wang W, Duncan EM, Wysocka J, Allis CD, et al. Molecular basis for site-specific read-out of histone H3K4me3 by the BPTF PHD finger of NURF. Nature. 2006;442:91–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M, et al. Recognition of a mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell. 2011;145:692–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dar AA, Majid S, Bezrookove V, Phan B, Ursu S, Nosrati M, et al. BPTF transduces MITF-driven prosurvival signals in melanoma cells. Proc Natl Acad Sci USA. 2016;113:6254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Richart L, Carrillo-de Santa Pau E, Río-Machín A, de Andrés MP, Cigudosa JC, Lobo VJS. et al. Bptf is required for c-Myc transcriptional activity and in vivo tumorigenesis. Nat Commun. 2016;7:10153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Balbás-Martínez C, Sagrera A, Carrillo-de-Santa-Pau E, Earl J, Márquez M, Vázquez M, et al. Recurrent inactivation of STAG2 in bladder cancer is not associated with aneuploidy. Nat Genet. 2013;45:1464–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Adams JM, Harris AW, Pinkert CA, Corcoran LM, Alexander WS, Cory S, et al. The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice. Nature. 1985;318:533–8.

    Article  CAS  PubMed  Google Scholar 

  17. Harris AW, Pinkert CA, Crawford M, Langdon WY, Brinster RL, Adams JM. The E mu-myc transgenic mouse. A model for high-incidence spontaneous lymphoma and leukemia of early B cells. J Exp Med. 1988;167:353–71.

    Article  CAS  PubMed  Google Scholar 

  18. Mori S, Rempel RE, Chang JT, Yao G, Lagoo AS, Potti A, et al. Utilization of pathway signatures to reveal distinct types of B lymphoma in the Eμ-myc model and human diffuse large B-cell lymphoma. Cancer Res. 2008;68:8525–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rempel RE, Jiang X, Fullerton P, Tan TZ, Ye J, Lau JA, et al. Utilization of the Eμ-Myc mouse to model heterogeneity of therapeutic response. Mol Cancer Ther. 2014;13:3219–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eischen CM, Weber JD, Roussel MF, Sherr CJ, Cleveland JL. Disruption of the ARF-Mdm2-p53 tumor suppressor pathway in Myc-induced lymphomagenesis. Genes Dev. 1999;13:2658–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Michalak EM, Jansen ES, Happo L, Cragg MS, Tai L, Smyth GK, et al. Puma and to a lesser extent Noxa are suppressors of Myc-induced lymphomagenesis. Cell Death Differ. 2009;16:684–96.

    Article  CAS  PubMed  Google Scholar 

  22. Lee SC, Phipson B, Hyland CD, Leong HS, Allan RS, Lun A, et al. Polycomb repressive complex 2 (PRC2) suppresses Em-myc lymphoma. Blood. 2013;122:2654–63.

    Article  CAS  PubMed  Google Scholar 

  23. Landry J, Sharov AA, Piao Y, Sharova LV, Xiao H, Southon E, et al. Essential role of chromatin remodelling protein Bptf in early mouse embryos and embryonic stem cells. PLoS Genet. 2008;4:e1000241.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Hobeika E, Thiemann S, Storch B, Jumaa H, Nielsen PJ, Pelanda R, et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc Natl Acad Sci USA. 2006;103:13789–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pasqualucci L, Bhagat G, Jankovic M, Compagno M, Smith P, Muramatsu M, et al. AID is required for germinal center-derived lymphomagenesis. Nat Genet. 2008;40:108–12.

    Article  CAS  PubMed  Google Scholar 

  26. Sabò A, Kress TR, Pelizzola M, de Pretis S, Gorski MM, Tesi A, et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature. 2014;511:488–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hummel M, Bentink S, Berger H, Klapper W, Wessendorf S, Barth TFE, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354:2419–30.

    Article  CAS  PubMed  Google Scholar 

  28. Klapper W, Szczepanowski M, Burkhardt B, Berger H, Rosolowski M, Bentink S, et al. Molecular profiling of pediatric mature B-cell lymphoma treated in population-based prospective clinical trials. Blood. 2008;112:1374–81.

    Article  CAS  PubMed  Google Scholar 

  29. Yang Y, Shaffer AL III, Emre NC, Ceribelli M, Zhang M, Wright G, et al. Exploiting synthetic lethality for the therapy of ABC diffuse large B cell lymphoma. Cancer Cell. 2012;21:723–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 2009;1:a000034.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Landry JW, Banerjee S, Taylor B, Aplan PD, Singer A, Wu C. Chromatin remodeling complex NURF regulates thymocyte maturation. Genes Dev. 2011;25:275–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Frey WD, Chaudhry A, Slepicka PF, Ouellette AM, Kirberger SE, Pomerantz WCK, et al. BPTF maintains chromatin accessibility and the self-renewal capacity of mammary gland stem cells. Stem Cell Rep. 2017;9:23–31.

    Article  CAS  Google Scholar 

  33. Xu B, Cai L, Butler JM, Chen D, Lu X, Allison DF, et al. The chromatin remodeler BPTF activates a stemness gene-expression program essential for the maintenance of adult hematopoietic stem cells. Stem Cell Rep. 2018;10:675–83.

    Article  CAS  Google Scholar 

  34. Keller U, Nilsson JA, Maclean KH, Old JB, Cleveland JL. Nfkb 1 is dispensable for Myc‐induced lymphomagenesis. Oncogene. 2005;24:6231–40.

    Article  CAS  PubMed  Google Scholar 

  35. Klapproth K, Sander S, Marinkovic D, Baumann B, Wirth T. The IKK2/NF-kB pathway suppresses MYC-induced lymphomagenesis. Blood. 2009;114:2448–58.

    Article  CAS  PubMed  Google Scholar 

  36. Dave SS, Fu K, Wright GW, Lam LT, Kluin P, Boerma EJ, et al. Molecular diagnosis of Burkitt’s lymphoma. N Engl J Med. 2006;354:2431–42.

    Article  CAS  PubMed  Google Scholar 

  37. Yang Z, Shah K, Busby T, Giles K, Khodadadi-Jamayran A, Li W, et al. Hijacking a key chromatin modulator creates epigenetic vulnerability for MYC-driven cancer. J Clin Investig. 2018;128:3605–18.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Iritani BM, Forbush KA, Farrar MA, Perlmutter RM. Control of B cell development by Ras-mediated activation of Raf. EMBO J. 1997;16:7019–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Graña O, Rubio-Camarillo M, Fdez-Riverola F, Pisano DG, Glez-Peña D. Nextpresso: Next generation sequencing expression analysis pipeline. Curr Bioinform. 2018;13:583–91.

    Article  CAS  Google Scholar 

  40. Ishida S, Huang E, Zuzan H, Spang R, Leone G, West M, et al. Role for E2F in control of both DNA replication and mitotic functions as revealed from DNA microarray analysis. Mol Cell Biol. 2001;21:4684–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yu D, Cozma D, Park A, Thomas-Tikhonenko A. Functional validation of genes implicated in lymphomagenesis: an in vivo selection assay using a Myc-induced B-cell tumor. Ann N Y Acad Sci. 2005;1059:145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pujana MA, Han JD, Starita LM, Stevens KN, Tewari M, Ahn JS, et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat Genet. 2007;39:1338–49.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the CNIO Core facilities and ECG members for support, V. J. Sánchez-Arévalo for valuable discussions, E. Carrillo-de-Santa Pau for discussion on bioinformatics analyses, and V. de Yébenes for critical comments to a previous version of the manuscript. We thank M. Reth and C. Blanco for providing Mb1-Cre and Eμ-Myc mice, respectively. FXR was supported, in part, by grants SAF2011-29530, SAF2015-70553-R, RTI2018-101071-B-I00, and RTI2018-101071-B-I00 (Ministerio de Ciencia, Innovación y Universidades, Madrid, Spain) (co-funded by the ERDF-EU) and RTICC (RD12/0036/0034, RD12/0036/0050, Instituto de Salud Carlos III). AR was supported by ERC StG BCLYM-207844, SAF2013-42767-R, and SAF2016-75511-R grants and co-funding by Fondo Europeo de Desarrollo Regional (FEDER). CNIO is supported by Ministerio de Ciencia, Innovación y Universidades as a Centro de Excelencia Severo Ochoa SEV-2015-0510. The CNIC is supported by the Ministerio de Ciencia, Innovación y Universidades (MCNU) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505). Personal grants: PD and JP, Asociación Española Contra el Cáncer; IF, Amigos del CNIO/Juegaterapia; MPA, Ministerio de Ciencia, Innovación y Universidades, Spain. FXR acknowledges the support of Asociación Española Contra el Cáncer.

Author information

Authors and Affiliations

Authors

Contributions

LR designed and performed the in vivo studies; processed, and analysed the RNA-sequencing data, and analysed the public expression datasets of human aggressive B-cell lymphomas. IF performed the immunohistochemical analysis of tumor samples and the western blot characterization of tumor samples. PD designed, performed, and analysed the BM transplantation experiments. MPA and JP contributed to the conduct of the experimental work. NP provided technical support with mouse colony maintenance. JFG contributed to the histopathological analysis of mouse lymphomas. MAP provided human samples for histological evaluation. AR contributed to experimental design, provided scientific insight, and contributed with reagents and mouse lines. FXR contributed to experimental design, conceived and supervised the study. LR and FXR wrote the paper with contributions from the co-authors. FXR and AR obtained financial support.

Corresponding author

Correspondence to Francisco X. Real.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richart, L., Felipe, I., Delgado, P. et al. Bptf determines oncogenic addiction in aggressive B-cell lymphomas. Oncogene 39, 4884–4895 (2020). https://doi.org/10.1038/s41388-020-1331-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-020-1331-3

This article is cited by

Search

Quick links