Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

ZNF37A promotes tumor metastasis through transcriptional control of THSD4/TGF-β axis in colorectal cancer

Abstract

Poorly differentiated colorectal cancer (CRC) is characterized by aggressive invasion and stromal fibroblast activation, which results in rapid progression and poor therapeutic consequences. However, the regulatory mechanism involved remains unclear. Here, we showed that ZNF37A, a member of KRAB-ZFP family, was upregulated in poorly differentiated CRCs and associated with tumor metastasis. ZNF37A enhanced the metastatic potential of multiple CRC cell lines and promoted distant metastasis in an orthotopic CRC model. Further investigation attributed the ZNF37A-exacerbated metastasis to increased extracellular TGF-β and the consequent activation of cancer-associated fibroblasts (CAFs) in tumor microenvironment (TME). Mechanistically, ZNF37A formed a complex with KAP1 and bound to the promoter of THSD4, a TME modulator, to suppress its transcription, which is required for ZNF37A-mediated TGF-β activation and CRC metastasis. Collectively, our study indicates that ZNF37A promotes TGF-β signaling in CRC cells and activates CAFs by transcriptionally repressing THSD4 to drive CRC metastasis, implicating ZNF37A as a potential biomarker for CRC differentiation and progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ZNF37A is upregulated in human colorectal cancers and associated with poor-prognosis subtype.
Fig. 2: ZNF37A promotes colorectal cancer cell invasion and metastasis in vitro and in vivo.
Fig. 3: ZNF37A activates TGF-β signaling to promote colorectal cancer metastasis.
Fig. 4: ZNF37A promotes the positive feedback regulation between cancer cells and cancer-associated fibroblasts.
Fig. 5: ZNF37A directly binds to THSD4 promoter and represses THSD4 transcription.
Fig. 6: THSD4 is a downstream effector of ZNF37A.

Similar content being viewed by others

References

  1. Fleming M, Ravula S, Tatishchev SF, Wang HL. Colorectal carcinoma: pathologic aspects. J Gastrointest Oncol. 2012;3:153–73.

    PubMed  PubMed Central  Google Scholar 

  2. Punt CJ, Koopman M, Vermeulen L. From tumour heterogeneity to advances in precision treatment of colorectal cancer. Nat Rev Clin Oncol. 2017;14:235–46.

    Article  CAS  PubMed  Google Scholar 

  3. Aiello NM, Kang Y. Context-dependent EMT programs in cancer metastasis. J Exp Med. 2019;216:1016–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gabriela E, Michael I, Didier T. KRAB zinc finger proteins. Development. 2017;144:2719–29.

    Article  Google Scholar 

  5. Tada Y, Yamaguchi Y, Kinjo T, Song X, Akagi T, Takamura H, et al. The stem cell transcription factor ZFP57 induces IGF2 expression to promote anchorage-independent growth in cancer cells. Oncogene. 2014;34:752–60.

    Article  PubMed  Google Scholar 

  6. Di W, Guoyuan L, Yufeng L, Hexige S, Chenji W, Zhen W, et al. Zinc finger protein 191 inhibits hepatocellular carcinoma metastasis through discs large 1‐mediated yes‐associated protein inactivation. Hepatology. 2016;64:1148–62.

    Article  Google Scholar 

  7. Guo C, Jianxiang C, Yiting Q, Yaru S, Wei L, Qi Z, et al. ZNF830 mediates cancer chemoresistance through promoting homologous-recombination repair. Nucleic Acids Res. 2017;46:1266–79.

    Google Scholar 

  8. Iwafuchi-Doi M, Zaret KS. Pioneer transcription factors in cell reprogramming. Genes Dev. 2014;28:2679–92.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, Erwin DH, et al. The origin and evolution of cell types. Nat Rev Genet. 2016;17:744–57.

    Article  CAS  PubMed  Google Scholar 

  10. Takahashi K, Yamanaka S. A decade of transcription factor-mediated reprogramming to pluripotency. Nat Rev Mol cell Biol. 2016;17:183–93.

    Article  CAS  PubMed  Google Scholar 

  11. Tenen DG. Disruption of differentiation in human cancer: AML shows the way. Nat Rev Cancer. 2003;3:89–101.

    Article  CAS  PubMed  Google Scholar 

  12. Gremel G, Wanders A, Cedernaes J, Fagerberg L, Hallström B, Edlund K, et al. The human gastrointestinal tract-specific transcriptome and proteome as defined by RNA sequencing and antibody-based profiling. J Gastroenterol. 2015;50:46–57.

    Article  CAS  PubMed  Google Scholar 

  13. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483:603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Berg KCG, Eide PW, Eilertsen IA, Johannessen B, Bruun J, Danielsen SA, et al. Multi-omics of 34 colorectal cancer cell lines - a resource for biomedical studies. Mol cancer. 2017;16:116.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The Human Transcription Factors. Cell. 2018;172:650–65.

    Article  CAS  PubMed  Google Scholar 

  16. Morgane G, Antoine M, Jérôme Alexandre D, Michel C, Karine G-T, Sophie A, et al. A defective Krab-domain zinc-finger transcription factor contributes to altered myogenesis in myotonic dystrophy type 1. Hum Mol Genet. 2013;22:5188–98.

    Article  Google Scholar 

  17. Alonso-Alconada L, Muinelo-Romay L, Madissoo K, Diaz-Lopez A, Krakstad C, Trovik J, et al. Molecular profiling of circulating tumor cells links plasticity to the metastatic process in endometrial cancer. Mol Cancer. 2014;13:223.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ocaña OH, Córcoles R, Fabra A, Moreno-Bueno G, Acloque H, Vega S, et al. Metastatic colonization requires the repression of the epithelial-mesenchymal transition inducer Prrx1. Cancer Cell. 2012;22:709–24.

    Article  PubMed  Google Scholar 

  19. McCarthy N. Metastasis: SIX1 of the best. Nat Rev Cancer. 2012;12:316.

    Article  CAS  PubMed  Google Scholar 

  20. Yau C, Esserman L, Moore DH, Waldman F, Sninsky J, Benz CC. A multigene predictor of metastatic outcome in early stage hormone receptor-negative and triple-negative breast cancer. Breast Cancer Res. 2010;12:R85.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Derwinger K, Kodeda K, Bexe-Lindskog E, Taflin H. Tumour differentiation grade is associated with TNM staging and the risk of node metastasis in colorectal cancer. Acta Oncologica. 2010;49:57–62.

    Article  PubMed  Google Scholar 

  22. Barbara J, Jonas JS, Daniel B. Transforming growth factor β superfamily signaling in development of colorectal cancer. Gastroenterology. 2017;152:36–52.

    Article  Google Scholar 

  23. Li Y, Mindy CH, Ying EZ. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. Embo J. 2002;21:3749–59.

    Article  Google Scholar 

  24. Zawel L, Dai JL, Buckhaults P, Zhou S, Kinzler KW, Vogelstein B, et al. Human Smad3 and Smad4 are sequence-specific transcription activators. Mol Cell. 1998;1:611–7.

    Article  CAS  PubMed  Google Scholar 

  25. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017;168:670–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Daniele VFT, Eduard B. Targeting the microenvironment in advanced colorectal. Cancer Trends Cancer. 2016;2:495–504.

    Article  Google Scholar 

  27. Rui L, Jingyi L, Ke X, Tao Z, Yunlong L, Yi C, et al. FGFR4 promotes stroma-induced epithelial-to-mesenchymal transition in colorectal cancer. Cancer Res. 2013;73:5926–35.

    Article  Google Scholar 

  28. Akira O, Piyush BG, Dennis CS, Fernando A-S, Thierry D, Rizwan N, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.

    Article  Google Scholar 

  29. Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal cells in colon cancer. Gastroenterology. 2017;152:964–79.

    Article  CAS  PubMed  Google Scholar 

  30. Robertson IB, Rifkin DB. Regulation of the bioavailability of TGF-β and TGF-β-related proteins. Cold Spring Harbor Perspect Biol. 2016;8:a021907.

  31. Ko T, Ri-ichiroh M, Tomiko Y, Itsuko N, Yasuko O, Douglas RK, et al. ADAMTSL-6 is a novel extracellular matrix protein that binds to fibrillin-1 and promotes fibrillin-1 fibril formation. J Biol Chem. 2010;285:4870–82.

    Article  Google Scholar 

  32. Masahiro S, Misaki K, Masahito O, Masamitsu O, Ko T, Kazutaka K, et al. ADAMTSL6β protein rescues fibrillin-1 microfibril disorder in a marfan syndrome mouse model through the promotion of fibrillin-1 assembly. J Biol Chem. 2011;286:38602–13.

    Article  Google Scholar 

  33. Frank WS, Ernest R, Hamed SN, Marjan B, Laura FC, Yimeng Y, et al. Multiparameter functional diversity of human C2H2 zinc finger proteins. Genome Res. 2016;26:1742–52.

    Article  Google Scholar 

  34. Charles JD, Joan M. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Bio. 2018;19:419–35.

    Article  Google Scholar 

  35. Nathan RW, Sarah M, Fanny F, Fiona P. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol. 2015;15:nri3896.

    Google Scholar 

  36. Cohen H, Ben-Hamo R, Gidoni M, Yitzhaki I, Kozol R, Zilberberg A, et al. Shift in GATA3 functions, and GATA3 mutations, control progression and clinical presentation in breast cancer. Breast cancer Res: BCR. 2014;16:464.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Adamski V, Hattermann K, Kubelt C, Cohrs G, Lucius R, Synowitz M, et al. Entry and exit of chemotherapeutically-promoted cellular dormancy in glioblastoma cells is differentially affected by the chemokines CXCL12, CXCL16, and CX3CL1. Oncogene. 2020;39:4421–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. Nat Rev Clin Oncol. 2018;15:366–81.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hiroki K, Atsushi E, Susan LW, Alastair DB, Masahide T, Daniel LW. Cancer-associated fibroblasts in gastrointestinal cancer. Nat Rev Gastroentero. 2019;16:282–95.

    Article  Google Scholar 

  40. Ankur C, Lubaba K, Nathan Peter B, Pinaki B, Daniel DDC. TGF-β-associated extracellular matrix genes link cancer-associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun. 2018;9:4692.

    Article  Google Scholar 

  41. Li H, Courtois ET, Sengupta D, Tan Y, Chen KH, Goh JJL, et al. Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors. Nat Genet. 2017;49:708–18.

    Article  CAS  PubMed  Google Scholar 

  42. André T, de Gramont A, Vernerey D, Chibaudel B, Bonnetain F, Tijeras-Raballand A, et al. Adjuvant fluorouracil, leucovorin, and oxaliplatin in stage II to III colon cancer: updated 10-year survival and outcomes According to BRAF Mutation and Mismatch Repair Status of the MOSAIC Study. J Clin Oncol: Off J Am Soc Clin Oncol. 2015;33:4176–87.

    Article  Google Scholar 

  43. Alexandre C, Enza L, Antonio B-L, Elisa E, Xavier H-M, Mar I, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47:ng.3225.

    Google Scholar 

  44. Daniele VFT, Sergio P-P, Diana S, Antonio B-L, Jordi B-R, Mar I, et al. TGFβ drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554:538.

    Article  Google Scholar 

  45. Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Guangdong Basic and Applied Basic Research Foundation (2019B030302012), National Key R&D Program of China (2020YFA0509400, 2020YFC2002700), the Chinese NSFC (nos 81821002, 81672867, 81790251, 81702378) and China Postdoctoral Science Foundation (2019T120845, 2018M643496).

Author information

Authors and Affiliations

Authors

Contributions

CH, ZZ, and YW designed and supervised the research. JL, ZH, QY, YC, JJ, ZZ, KX, and ML performed the experiments. HC performed the bioinformatic analysis. SQ, NX, and JL developed the animal models. QY, YW, KX, and ZZ provided the clinic samples. ZH, HC, and CH wrote the manuscript.

Corresponding authors

Correspondence to Ke Xie or Canhua Huang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Huang, Z., Chen, HN. et al. ZNF37A promotes tumor metastasis through transcriptional control of THSD4/TGF-β axis in colorectal cancer. Oncogene 40, 3394–3407 (2021). https://doi.org/10.1038/s41388-021-01713-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-021-01713-9

This article is cited by

Search

Quick links