Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Hyperglycemia-induced oxidative stress promotes tumor metastasis by upregulating vWF expression in endothelial cells through the transcription factor GATA1

Abstract

Diabetes mellitus (DM) characterized by hyperglycemia is a chronic metabolic disorder that leads to many symptoms and vascular complications. Despite the close association between DM and cancer progression, the response and role of endothelial cells (ECs) under diabetic conditions in tumor metastasis remain to be elucidated. In this study, we sought to determine whether and how ECs under diabetic conditions contribute to tumor metastasis. We have taken advantage of syngeneic mouse tumor models of Lewis lung carcinoma (LLC) and melanoma (B16F10) cells and a streptozotocin (STZ)-induced hyperglycemia model. We demonstrated that hyperglycemia increased the metastasis of LLC and B16F10 cells in an experimental metastasis model with an intravenous injection of the tumor cells. We also found that hyperglycemia promoted lung metastasis of tumor cells by increasing the adhesiveness of ECs to facilitate the adhesion of tumor cells to ECs rather than affecting the metastatic behavior of tumor cells themselves. From the analysis of gene expression in primary lung ECs from STZ-treated mice, we identified that vWF promoted the adhesion of tumor cells to ECs and the transendothelial migration of tumor cells. Mechanistically, hyperglycemia-induced oxidative stress in ECs, and increased oxidative stress enhanced vWF expression in ECs through an increase in the transcription factor GATA1. These results provide evidence for the role of vWF in ECs in promoting hyperglycemia-induced tumor metastasis and potential therapeutic targets for the regulation of vWF expression in ECs and hyperglycemia-induced tumor metastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Hyperglycemia increases tumor metastasis but not primary tumor growth.
Fig. 2: High glucose conditions do not affect the proliferation and migration of tumor cells.
Fig. 3: vWF in ECs mediates the adhesion and transendothelial migration of tumor cells.
Fig. 4: Oxidative stress increases vWF expression in diabetic lung ECs.
Fig. 5: Oxidative stress increases vWF expression in ECs via the transcription factor GATA1.
Fig. 6: The antioxidant NAC inhibit H2O2-induced increase in adhesion of tumor cells to ECs and transendothelial migration of tumor cells.
Fig. 7: vWF in ECs mediates H2O2-induced increase in adhesion of tumor cells to ECs and transendothelial migration of tumor cells.
Fig. 8: Insulin supplementation attenuates hyperglycemia-induced oxidative stress and vWF expression in ECs and tumor metastasis in diabetic mice.

Similar content being viewed by others

References

  1. Folkman J. Role of angiogenesis in tumor growth and metastasis. Semin Oncol. 2002;29:15–18.

    Article  CAS  PubMed  Google Scholar 

  2. Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12:895–904.

    Article  CAS  PubMed  Google Scholar 

  3. Orr FW, Wang HH, Lafrenie RM, Scherbarth S, Nance DM. Interactions between cancer cells and the endothelium in metastasis. J Pathol. 2000;190:310–29.

    Article  CAS  PubMed  Google Scholar 

  4. Carstensen B, Read SH, Friis S, Sund R, Keskimaki I, Svensson AM, et al. Cancer incidence in persons with type 1 diabetes: a five-country study of 9,000 cancers in type 1 diabetic individuals. Diabetologia. 2016;59:980–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giovannucci E, Harlan DM, Archer MC, Bergenstal RM, Gapstur SM, Habel LA, et al. Diabetes and cancer: a consensus report. CA: Cancer J Clin. 2010;60:207–21.

    Google Scholar 

  6. Noh Y, Jeon SM, Shin S. Association between glucose-lowering treatment and cancer metastasis among patients with preexisting type 2 diabetes and incident malignancy. Int J Cancer. 2019;144:1530–9.

    Article  CAS  PubMed  Google Scholar 

  7. Spratt DE, Beadle BM, Zumsteg ZS, Rivera A, Skinner HD, Osborne JR, et al. The influence of diabetes mellitus and metformin on distant metastases in oropharyngeal cancer: a multicenter study. Int J Radiat Oncol Biol Phys. 2016;94:523–31.

    Article  CAS  PubMed  Google Scholar 

  8. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324:1029–33.

    Article  Google Scholar 

  9. Scappaticcio L, Maiorino MI, Bellastella G, Giugliano D, Esposito K. Insights into the relationships between diabetes, prediabetes, and cancer. Endocrine. 2017;56:231–9.

    Article  CAS  PubMed  Google Scholar 

  10. Fainsod-Levi T, Gershkovitz M, Vols S, Kumar S, Khawaled S, Sagiv JY, et al. Hyperglycemia impairs neutrophil mobilization leading to enhanced metastatic seeding. Cell Rep. 2017;21:2384–92.

    Article  CAS  PubMed  Google Scholar 

  11. Jafar N, Edriss H, Nugent K. The effect of short-term hyperglycemia on the innate immune system. Am J Med Sci. 2016;351:201–11.

    Article  PubMed  Google Scholar 

  12. Ikemura M, Nishikawa M, Kusamori K, Fukuoka M, Yamashita F, Hashida M. Pivotal role of oxidative stress in tumor metastasis under diabetic conditions in mice. J Controlled Release. 2013;170:191–7.

    Article  CAS  Google Scholar 

  13. Basta G, Schmidt AM, De, Caterina R. Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc Res. 2004;63:582–92.

    Article  CAS  PubMed  Google Scholar 

  14. Franses JW, Drosu NC, Gibson WJ, Chitalia VC, Edelman ER. Dysfunctional endothelial cells directly stimulate cancer inflammation and metastasis. Int J Cancer. 2013;133:1334–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jeon HY, Lee YJ, Kim YS, Kim SY, Han ET, Park WS, et al. Proinsulin C-peptide prevents hyperglycemia-induced vascular leakage and metastasis of melanoma cells in the lungs of diabetic mice. FASEB J. 2019;33:750–62.

    Article  CAS  PubMed  Google Scholar 

  16. Sadler JE. von Willebrand factor in its native environment. Blood. 2013;121:2583–4.

    Article  CAS  PubMed  Google Scholar 

  17. Nichols TC, Samama CM, Bellinger DA, Roussi J, Reddick RL, Bonneau M, et al. Function of von Willebrand factor after crossed bone marrow transplantation between normal and von Willebrand disease pigs: effect on arterial thrombosis in chimeras. Proc Natl Acad Sci USA. 1995;92:2455–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wagner DD. Cell biology of von Willebrand factor. Annu Rev Cell Biol. 1990;6:217–46.

    Article  CAS  PubMed  Google Scholar 

  19. De Ceunynck K, De Meyer SF, Vanhoorelbeke K. Unwinding the von Willebrand factor strings puzzle. Blood. 2013;121:270–7.

    Article  PubMed  Google Scholar 

  20. Gay LJ, Felding-Habermann B. Contribution of platelets to tumour metastasis. Nat Rev Cancer. 2011;11:123–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim KJ, Kwon SH, Yun JH, Jeong HS, Kim HR, Lee EH, et al. STAT3 activation in endothelial cells is important for tumor metastasis via increased cell adhesion molecule expression. Oncogene. 2017;36:5445–59.

    Article  CAS  PubMed  Google Scholar 

  22. Yun JH, Lee DH, Jeong HS, Kim HS, Ye SK, Cho CH. STAT3 activation in microglia exacerbates hippocampal neuronal apoptosis in diabetic brains. J Cell Physiol. 2021;236:7058–70.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Niu N, Xu S, Jin ZG. A simple protocol for isolating mouse lung endothelial cells. Sci Rep. 2019;9:1458.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yun JH, Park SW, Kim KJ, Bae JS, Lee EH, Paek SH, et al. Endothelial STAT3 activation increases vascular leakage through downregulating tight junction proteins: implications for diabetic retinopathy. J Cell Physiol. 2017;232:1123–34.

    Article  CAS  PubMed  Google Scholar 

  25. Terraube V, Marx I, Denis CV. Role of von Willebrand factor in tumor metastasis. Thromb Res. 2007;120:S64–70.

    Article  PubMed  Google Scholar 

  26. Marini A, Rotblat B, Sbarrato T, Niklison-Chirou MV, Knight JRP, Dudek K, et al. TAp73 contributes to the oxidative stress response by regulating protein synthesis. Proc Natl Acad Sci USA. 2018;115:6219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chan SH, Wu CA, Wu KL, Ho YH, Chang AY, Chan JY. Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension. Circ Res. 2009;105:886–96.

    Article  CAS  PubMed  Google Scholar 

  28. Xiang Y, Cheng J, Wang D, Hu X, Xie Y, Stitham J, et al. Hyperglycemia repression of miR-24 coordinately upregulates endothelial cell expression and secretion of von Willebrand factor. Blood. 2015;125:3377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lou Z, Li X, Zhao X, Du K, Wang B. Resveratrol attenuates hydrogen peroxideinduced apoptosis, reactive oxygen species generation, and PSGL1 and VWF activation in human umbilical vein endothelial cells, potentially via MAPK signalling pathways. Mol Med Rep. 2018;17:2479–87.

    CAS  PubMed  Google Scholar 

  30. Li JM, Mullen AM, Yun S, Wientjes F, Brouns GY, Thrasher AJ, et al. Essential role of the NADPH oxidase subunit p47(phox) in endothelial cell superoxide production in response to phorbol ester and tumor necrosis factor-alpha. Circ Res. 2002;90:143–50.

    Article  CAS  PubMed  Google Scholar 

  31. He H, Wang L, Qiao Y, Zhou Q, Li H, Chen S, et al. Doxorubicin induces endotheliotoxicity and mitochondrial dysfunction via ROS/eNOS/NO pathway. Front Pharm. 2019;10:1531.

    Article  Google Scholar 

  32. Liu J, Kanki Y, Okada Y, Jin E, Yano K, Shih SC, et al. A +220 GATA motif mediates basal but not endotoxin-repressible expression of the von Willebrand factor promoter in Hprt-targeted transgenic mice. J Thromb Haemost. 2009;7:1384–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schwachtgen JL, Janel N, Barek L, Duterque-Coquillaud M, Ghysdael J, Meyer D, et al. Ets transcription factors bind and transactivate the core promoter of the von Willebrand factor gene. Oncogene. 1997;15:3091–102.

    Article  CAS  PubMed  Google Scholar 

  34. Dmitrieva NI, Burg MB. Secretion of von Willebrand factor by endothelial cells links sodium to hypercoagulability and thrombosis. Proc Natl Acad Sci USA. 2014;111:6485–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li WJ, Zhang XH, Sang H, Zhou Y, Shang CY, Wang YQ, et al. Effects of hyperglycemiaon the progression of tumor diseases. J Exp Clin Canc Res. 2019;38:327–33.

    Article  Google Scholar 

  36. Ikemura M, Hashida T. Effect of hyperglycemia on antitumor activity and survival in tumor-bearing mice receiving oxaliplatin and fluorouracil. Anticancer Res. 2017;37:5463–8.

    CAS  PubMed  Google Scholar 

  37. Foda HD, Zucker S. Matrix metalloproteinases in cancer invasion, metastasis and angiogenesis. Drug Discov Today. 2001;6:478–82.

    Article  CAS  PubMed  Google Scholar 

  38. Yang Y, Estrada EY, Thompson JF, Liu W, Rosenberg GA. Matrix metalloproteinase-mediated disruption of tight junction proteins in cerebral vessels is reversed by synthetic matrix metalloproteinase inhibitor in focal ischemia in rat. J Cereb Blood Flow Metab. 2007;27:697–709.

    Article  CAS  PubMed  Google Scholar 

  39. Zheng Y, Yamamoto S, Ishii Y, Sang Y, Hamashima T, Van De N, et al. Glioma-derived platelet-derived growth factor-bb recruits oligodendrocyte progenitor cells via platelet-derived growth factor receptor-alpha and remodels cancer stroma. Am J Pathol. 2016;186:1081–91.

    Article  CAS  PubMed  Google Scholar 

  40. Aghajanian A, Wittchen ES, Allingham MJ, Garrett TA, Burridge K. Endothelial cell junctions and the regulation of vascular permeability and leukocyte transmigration. J Thromb Haemost. 2008;6:1453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Garcia-Roman J, Zentella-Dehesa A. Vascular permeability changes involved in tumor metastasis. Cancer Lett. 2013;335:259–69.

    Article  CAS  PubMed  Google Scholar 

  42. Drummond GR, Sobey CG. Endothelial NADPH oxidases: which NOX to target in vascular disease? Trends Endocrinol Metab. 2014;25:452–63.

    Article  CAS  PubMed  Google Scholar 

  43. Gorin Y, Block K. Nox as a target for diabetic complications. Clin Sci. 2013;125:361–82.

    Article  CAS  Google Scholar 

  44. Dymkowska D, Drabarek B, Podszywalow-Bartnicka P, Szczepanowska J, Zablocki K. Hyperglycaemia modifies energy metabolism and reactive oxygen species formation in endothelial cells in vitro. Arch Biochem Biophys. 2014;542:7–13.

    Article  CAS  PubMed  Google Scholar 

  45. Avdonin PV, Rybakova EY, Avdonin PP, Trufanov SK, Mironova GY, Tsitrina AA, et al. VAS2870 inhibits histamine-induced calcium signaling and vWF secretion in human umbilical vein endothelial cells. Cells. 2019;8:196–207.

  46. Vischer UM, Jornot L, Wollheim CB, Theler JM. Reactive oxygen intermediates induce regulated secretion of von Willebrand factor from cultured human vascular endothelial cells. Blood. 1995;85:3164–72.

    Article  CAS  PubMed  Google Scholar 

  47. Takano M, Meneshian A, Sheikh E, Yamakawa Y, Wilkins KB, Hopkins EA, et al. Rapid upregulation of endothelial P-selectin expression via reactive oxygen species generation. Am J Physiol Heart Circ Physiol. 2002;283:H2054–2061.

    Article  CAS  PubMed  Google Scholar 

  48. Mordes DB, Lazarchick J, Colwell JA, Sens DA. Elevated glucose concentrations increase factor VIIIR:Ag levels in human umbilical vein endothelial cells. Diabetes. 1983;32:876–8.

    Article  CAS  PubMed  Google Scholar 

  49. Chan NN, Fuller JH, Rubens M, Colhoun HM. Von Willebrand factor in type 1 diabetes: its production and coronary artery calcification. Med Sci Monit: Int Med J Exp Clin Res. 2003;9:CR297–303.

    CAS  Google Scholar 

  50. Seligman BG, Biolo A, Polanczyk CA, Gross JL, Clausell N. Increased plasma levels of endothelin 1 and von Willebrand factor in patients with type 2 diabetes and dyslipidemia. Diabetes Care. 2000;23:1395–1400.

    Article  CAS  PubMed  Google Scholar 

  51. Umetani M, Mataki C, Minegishi N, Yamamoto M, Hamakubo T, Kodama T. Function of GATA transcription factors in induction of endothelial vascular cell adhesion molecule-1 by tumor necrosis factor-alpha. Arteriosc Thromb Vasc Biol. 2001;21:917–22.

    Article  CAS  Google Scholar 

  52. Fan C, Ouyang P, Timur AA, He P, You SA, Hu Y, et al. Novel roles of GATA1 in regulation of angiogenic factor AGGF1 and endothelial cell function. J Biol Chem. 2009;284:23331–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. O’Sullivan JM, Preston RJS, Robson T, O’Donnell JS. Emerging roles for von Willebrand factor in cancer cell biology. Semin Thromb Hemost. 2018;44:159–66.

    Article  PubMed  Google Scholar 

  54. Gadducci A, Baicchi U, Marrai R, Del Bravo B, Fosella PV, Facchini V. Pretreatment plasma levels of fibrinopeptide-A (FPA), D-dimer (DD), and von Willebrand factor (vWF) in patients with ovarian carcinoma. Gynecologic Oncol. 1994;53:352–6.

    Article  CAS  Google Scholar 

  55. Blann AD, Balakrishnan B, Shantsila E, Ryan P, Lip GY. Endothelial progenitor cells and circulating endothelial cells in early prostate cancer: a comparison with plasma vascular markers. Prostate. 2011;71:1047–53.

    Article  CAS  PubMed  Google Scholar 

  56. Rohsig LM, Damin DC, Stefani SD, Castro CG Jr, Roisenberg I, Schwartsmann G. von Willebrand factor antigen levels in plasma of patients with malignant breast disease. Braz J Med Biol Res. 2001;34:1125–9.

    Article  CAS  PubMed  Google Scholar 

  57. Wang WS, Lin JK, Lin TC, Chiou TJ, Liu JH, Yen CC, et al. Plasma von Willebrand factor level as a prognostic indicator of patients with metastatic colorectal carcinoma. World J Gastroenterol. 2005;11:2166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Franchini M, Frattini F, Crestani S, Bonfanti C, Lippi G. von Willebrand factor and cancer: a renewed interest. Thromb Res. 2013;131:290–2.

    Article  CAS  PubMed  Google Scholar 

  59. Li N. Platelets in cancer metastasis: to help the “villain” to do evil. Int J Cancer. 2016;138:2078–87.

    Article  CAS  PubMed  Google Scholar 

  60. Pilch J, Habermann R, Felding-Habermann B. Unique ability of integrin alpha(v)beta 3 to support tumor cell arrest under dynamic flow conditions. J Biol Chem. 2002;277:21930–8.

    Article  CAS  PubMed  Google Scholar 

  61. Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood. 2008;112:3011–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Terraube V, Pendu R, Baruch D, Gebbink MF, Meyer D, Lenting PJ, et al. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice. J Thromb Haemost: JTH. 2006;4:519–26.

    Article  CAS  PubMed  Google Scholar 

  63. Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Investig. 1988;81:1012–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Morganti M, Carpi A, Amo-Takyi B, Sagripanti A, Nicolini A, Giardino R, et al. Von Willebrand’s factor mediates the adherence of human tumoral cells to human endothelial cells and ticlopidine interferes with this effect. Biomed Pharmacother. 2000;54:431–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Dr. Kyong Soo Park for technical assistance in insulin supplementation experiments. This work is supported by funding from the National Research Foundation of Korea grant funded by the Korea government (2020R1A2C1008008 to CHC) and the SNUH Research Fund (0420210290 to CHC).

Author information

Authors and Affiliations

Authors

Contributions

HSJ performed majority of the experiments, analyzed the results, and wrote the manuscript. CHC (corresponding author) supervised the project and wrote the manuscript. DHL and SHK assisted with all experiments and reviewed the manuscript. HMS and HRK performed RNA sequencing, pathway analysis, and reviewed the manuscript. CHL helped in project design, data analysis, and reviewed the manuscript.

Corresponding author

Correspondence to Chung-Hyun Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, HS., Lee, DH., Kim, SH. et al. Hyperglycemia-induced oxidative stress promotes tumor metastasis by upregulating vWF expression in endothelial cells through the transcription factor GATA1. Oncogene 41, 1634–1646 (2022). https://doi.org/10.1038/s41388-022-02207-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-022-02207-y

This article is cited by

Search

Quick links