Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RBM12 drives PD-L1-mediated immune evasion in hepatocellular carcinoma by increasing JAK1 mRNA translation

Abstract

Immunosuppression characterizes the tumour microenvironment in HCC, and recent studies have implicated RNA-binding proteins (RBPs) in the development of HCC. Here, we conducted a screen and identified RBM12 as a key protein that increased the expression of PD-L1, thereby driving immune evasion in HCC. Furthermore, RBM12 was found to be significantly upregulated in HCC tissues and was associated with a poor prognosis for HCC patients. Through various molecular assays and high-throughput screening, we determined that RBM12 could directly bind to the JAK1 mRNA via its 4th-RRM (RNA recognition motif) domain and recruit EIF4A2 through its 2nd-RRM domain, enhancing the distribution of ribosomes on JAK1 mRNA, which promotes the translation of JAK1 and the subsequent upregulation of its expression. As a result, the activated JAK1/STAT1 pathway transcriptionally upregulates PD-L1 expression, facilitating immune evasion in HCC. In summary, our findings provide insights into the significant contribution of RBM12 to immune evasion in HCC, highlighting its potential as a therapeutic target in the future.

This graphical abstract shows that elevated expression of RBM12 in HCC can augment PD-L1-mediated tumour immune evasion by increasing the efficiency of JAK1 mRNA translation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RBM12 upregulates the expression of programmed death-ligand 1 (PD-L1) in hepatocellular carcinoma (HCC).
Fig. 2: RBM12 is highly expressed in HCC and negatively correlated with the patient prognosis.
Fig. 3: RBM12 promotes HCC immune evasion by increasing the activity of the JAK1/STAT1 signalling pathway.
Fig. 4: RBM12 recruits EIF4A2 to increase the translation of JAK1.
Fig. 5: RBM12 forms a heterodimer with EIF4A2 through the 2nd RRM domain to increase the translation of JAK1.
Fig. 6: RBM12-EIF4A2 synergistically increase PD-L1 expression in HCC.
Fig. 7: Knockout of RBM12 enhances the efficacy of HCC immunotherapy.

Similar content being viewed by others

Data availability

All data associated with this study are presented in the paper or Supplementary Data. Materials supporting the findings of this study are available from the corresponding author upon reasonable request. The high-throughput sequencing data generated in this study are publicly available at SRA datebase (PRJNA1067431).

References

  1. Greten T, Villanueva A, Korangy F, Ruf B, Yarchoan M, Ma L, et al. Biomarkers for immunotherapy of hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2023;20:780–798.

    Article  CAS  PubMed  Google Scholar 

  2. Vitale A, Cabibbo G, Iavarone M, Viganò L, Pinato D, Ponziani F, et al. Personalised management of patients with hepatocellular carcinoma: a multiparametric therapeutic hierarchy concept. Lancet Oncol. 2023;24:e312–e322.

    Article  PubMed  Google Scholar 

  3. Llovet J, Castet F, Heikenwalder M, Maini M, Mazzaferro V, Pinato D, et al. Immunotherapies for hepatocellular carcinoma. Nat Rev Clin Oncol. 2022;19:151–72.

    Article  CAS  PubMed  Google Scholar 

  4. Rimassa L, Finn R, Sangro B. Combination immunotherapy for hepatocellular carcinoma. J Hepatol. 2023;79:506–15.

    Article  CAS  PubMed  Google Scholar 

  5. Sun L, Zhang K, Xie Y, Liu J, Xiao Z. Immunotherapies for advanced hepatocellular carcinoma. Front Pharmacol. 2023;14:1138493.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Personalized DNA Vaccine Tamps Down HCC. Cancer Discov. 2022;12:7–8.

  7. Peiseler M, Schwabe R, Hampe J, Kubes P, Heikenwälder M, Tacke F. Immune mechanisms linking metabolic injury to inflammation and fibrosis in fatty liver disease - novel insights into cellular communication circuits. J Hepatol. 2022;77:1136–60.

    Article  CAS  PubMed  Google Scholar 

  8. Faivre S, Rimassa L, Finn R. Molecular therapies for HCC: Looking outside the box. J Hepatol. 2020;72:342–52.

    Article  CAS  PubMed  Google Scholar 

  9. Cappuyns S, Corbett V, Yarchoan M, Finn R, Llovet J. Critical Appraisal of Guideline Recommendations on Systemic Therapies for Advanced Hepatocellular Carcinoma: A Review. JAMA Oncol. 2023;10:395–404.

    Article  Google Scholar 

  10. Zou Z, Lin Z, Wu C, Tan J, Zhang J, Peng Y, et al. Micro-Engineered Organoid-on-a-Chip Based on Mesenchymal Stromal Cells to Predict Immunotherapy Responses of HCC Patients. Adv Sci (Weinh, Baden-Wurtt, Ger). 2023;10:e2302640.

    Google Scholar 

  11. Pinter M, Scheiner B, Peck-Radosavljevic M. Immunotherapy for advanced hepatocellular carcinoma: a focus on special subgroups. Gut. 2021;70:204–14.

    Article  CAS  PubMed  Google Scholar 

  12. Dhanasekaran R, Nault J, Roberts L, Zucman-Rossi J. Genomic Medicine and Implications for Hepatocellular Carcinoma Prevention and Therapy. Gastroenterology. 2019;156:492–509.

    Article  CAS  PubMed  Google Scholar 

  13. Stark G, Darnell J. The JAK-STAT pathway at twenty. Immunity. 2012;36:503–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Danese S, Argollo M, Le Berre C, Peyrin-Biroulet L. JAK selectivity for inflammatory bowel disease treatment: does it clinically matter? Gut. 2019;68:1893–9.

    Article  CAS  PubMed  Google Scholar 

  15. Fountzilas E, Kurzrock R, Vo H, Tsimberidou A. Wedding of Molecular Alterations and Immune Checkpoint Blockade: Genomics as a Matchmaker. J Natl Cancer Inst. 2021;113:1634–47.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aaronson D, Horvath C. A road map for those who don’t know JAK-STAT. Sci (N. Y, NY). 2002;296:1653–5.

    Article  CAS  Google Scholar 

  17. O’Shea J, Gadina M, Schreiber R Cytokine signaling in 2002: new surprises in the Jak/Stat pathway. Cell 2002;S121-131.

  18. Cerezo M, Guemiri R, Druillennec S, Girault I, Malka-Mahieu H, Shen S, et al. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat Med. 2018;24:1877–86.

    Article  CAS  PubMed  Google Scholar 

  19. He S, Valkov E, Cheloufi S, Murn J. The nexus between RNA-binding proteins and their effectors. Nat Rev Genet. 2023;24:276–94.

    Article  CAS  PubMed  Google Scholar 

  20. Wenhui Zhao TL, Ziyi F, Huilin Z, Yangguang DU, Hexu H. NAT10 Promotes the Malignant Progression of Hepatocellular Carcinoma through Upregulating RelA/p65 Acetylation. J Biol Regulators Homeost Agents. 2023;37:2935–46.

    Google Scholar 

  21. Gebauer F, Schwarzl T, Valcárcel J, Hentze M. RNA-binding proteins in human genetic disease. Nat Rev Genet. 2021;22:185–98.

    Article  CAS  PubMed  Google Scholar 

  22. Han H, Lin T, Fang Z, Zhou G. RBM23 Drives Hepatocellular Carcinoma by Activating NF-κB Signaling Pathway. BioMed Res Int. 2021;2021:6697476.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Liu J, Cao X. RBP-RNA interactions in the control of autoimmunity and autoinflammation. Cell Res. 2023;33:97–115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Han H, Lin T, Wang Z, Song J, Fang Z, Zhang J, et al. RNA-binding motif 4 promotes angiogenesis in HCC by selectively activating VEGF-A expression. Pharmacol Res. 2023;187:106593.

    Article  CAS  PubMed  Google Scholar 

  25. Kafasla P, Skliris A, Kontoyiannis D. Post-transcriptional coordination of immunological responses by RNA-binding proteins. Nat Immunol. 2014;15:492–502.

    Article  CAS  PubMed  Google Scholar 

  26. Huang Q, Wu X, Wang Z, Chen X, Wang L, Lu Y, et al. The primordial differentiation of tumor-specific memory CD8 T cells as bona fide responders to PD-1/PD-L1 blockade in draining lymph nodes. Cell. 2022;185:4049–.e4025.

    Article  CAS  PubMed  Google Scholar 

  27. Chen Y, Yang D, Li S, Gao Y, Jiang R, Deng L, et al. Development of a Listeria monocytogenes-based vaccine against hepatocellular carcinoma. Oncogene. 2011;31:2140–52.

    Article  PubMed  Google Scholar 

  28. Icard P, Simula L, Wu Z, Berzan D, Sogni P, Dohan A, et al. Why may citrate sodium significantly increase the effectiveness of transarterial chemoembolization in hepatocellular carcinoma? Drug Resistance Updates : Rev Commentaries Antimicrobial anticancer Chemother. 2021;59:100790.

    Article  CAS  Google Scholar 

  29. Lu C, Rong D, Zhang B, Zheng W, Wang X, Chen Z, et al. Current perspectives on the immunosuppressive tumor microenvironment in hepatocellular carcinoma: challenges and opportunities. Mol Cancer. 2019;18:130.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Wu Q, Sun T, Huang J, Han G, Han H. DNAAF5 promotes hepatocellular carcinoma malignant progression by recruiting USP39 to improve PFKL protein stability. Front Oncol. 2022;12:1032579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Choi W, Yip T, Wong G, Kim W, Yee L, Brooks-Rooney C, et al. Hepatocellular carcinoma risk in patients with chronic hepatitis B receiving tenofovir- vs. entecavir-based regimens: Individual patient data meta-analysis. J Hepatol. 2023;78:534–42.

    Article  CAS  PubMed  Google Scholar 

  32. Yang C, Zhang H, Zhang L, Zhu A, Bernards R, Qin W, et al. Evolving therapeutic landscape of advanced hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2023;20:203–22.

    Article  PubMed  Google Scholar 

  33. Topalian S, Forde P, Emens L, Yarchoan M, Smith K, Pardoll D. Neoadjuvant immune checkpoint blockade: A window of opportunity to advance cancer immunotherapy. Cancer Cell. 2023;41:1551–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. He X, Xu C. Immune checkpoint signaling and cancer immunotherapy. Cell Res. 2020;30:660–9.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Topalian S, Drake C, Pardoll D. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cai L, Li Y, Tan J, Xu L, Li Y. Targeting LAG-3, TIM-3, and TIGIT for cancer immunotherapy. J Hematol Oncol. 2023;16:101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pang K, Shi Z, Wei L, Dong Y, Ma Y, Wang W, et al. Research progress of therapeutic effects and drug resistance of immunotherapy based on PD-1/PD-L1 blockade. Drug Resistance Updates : Rev Commentaries Antimicrobial Anticancer Chemother. 2023;66:100907.

    Article  CAS  Google Scholar 

  38. Gaikwad S, Agrawal M, Kaushik I, Ramachandran S, Srivastava S. Immune checkpoint proteins: Signaling mechanisms and molecular interactions in cancer immunotherapy. Semin Cancer Biol. 2022;86:137–50.

    Article  CAS  PubMed  Google Scholar 

  39. Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, et al. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther. 2023;8:204.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 2021;6:402.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lin X, Farooqi A. Cucurbitacin mediated regulation of deregulated oncogenic signaling cascades and non-coding RNAs in different cancers: Spotlight on JAK/STAT, Wnt/β-catenin, mTOR, TRAIL-mediated pathways. Semin cancer Biol. 2021;73:302–9.

    Article  CAS  PubMed  Google Scholar 

  42. Endo T, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature. 1997;387:921–4.

    Article  CAS  PubMed  Google Scholar 

  43. Pan Y, Shu G, Fu L, Huang K, Zhou X, Gui C, et al. EHBP1L1 Drives Immune Evasion in Renal Cell Carcinoma through Binding and Stabilizing JAK1. Adv Sci (Weinh, Baden-Wurtt, Ger). 2023;10:e2206792.

    Google Scholar 

  44. Xiong J, He J, Zhu J, Pan J, Liao W, Ye H, et al. Lactylation-driven METTL3-mediated RNA mA modification promotes immunosuppression of tumor-infiltrating myeloid cells. Mol cell. 2022;82:1660–.e1610.

    Article  CAS  PubMed  Google Scholar 

  45. Han H, Zhu W, Lin T, Liu C, Zhai H. N4BP3 promotes angiogenesis in hepatocellular carcinoma by binding with KAT2B. Cancer Sci. 2022;113:3390–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We sincerely thank the central Laboratory of Taizhou People’s Hospital Affiliated to Nanjing Medical University for the help of instruments and equipment.

Funding

This project was supported by The Youth Fund of Taizhou People’s Hospital Affiliated to Nanjing Medical University (TZKY20220102), Key research project of Taizhou School of Clinical Medicine, Nanjing Medical University (TZKY20230306), Scientific research start-up fund of Taizhou People’s Hospital (QDJJ202106, QDJJ202103), Taizhou Society Development Project, Jiangsu, China (TS202308), General Project of Jiangsu Provincial Health Commission (H2023030), National Natural Science Foundation of China (82372755, 82203728, 82372746, 82374223), Huzhou Municipal Science and Technology Bureau welfare applied research project (Grant No. 2021GZ69), Research Fund of Anhui Institute of translational medicine (2022zhyx-C21), Outstanding Youth Scientific Research Projects in colleges and universities of Anhui Province (2022AH030115) and Nanjing special foundation for health science and technology development (distinguished young program, JQX21005).

Author information

Authors and Affiliations

Authors

Contributions

Qiang Wang, Huimin Guo and Hexu Han performed study concept and design; Hexu Han and Qian Shi completed the experimental part of the project; Yue Zhang, Mingdong Ding and Xianzhong He performed development of methodology and writing, review and revision of the paper; Yin Yuan and Siliang Wang provided acquisition, analysis and interpretation of data, and statistical analysis; Cuixia Liu, Dakun Zhao, Yifan Wang and Yanping Du provided technical and material support. All authors read and approved the final paper.

Corresponding authors

Correspondence to Yin Yuan, Siliang Wang, Huimin Guo or Qiang Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

Three cohorts of HCC tissue samples were collected from the Affiliated Taizhou People’s Hospital of Nanjing Medical University (Jiangsu Province, China), and the experimental protocol was approved by the Institutional Ethics Review Board of the Affiliated Taizhou People’s Hospital of Nanjing Medical University (2022-008-01). Pathological analysis was conducted to validate the authenticity of the specimens. Animal ethical testing certificates were approved by the Experimental Center of Jiangsu Hanjiang Biotechnology Co., LTD (HJSW-23050302), and the animals were raised in accordance with animal welfare laws.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, H., Shi, Q., Zhang, Y. et al. RBM12 drives PD-L1-mediated immune evasion in hepatocellular carcinoma by increasing JAK1 mRNA translation. Oncogene 43, 3062–3077 (2024). https://doi.org/10.1038/s41388-024-03140-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03140-y

This article is cited by

Search

Quick links