Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GLTSCR1 deficiency promotes colorectal cancer development through regulating non-homologous end joining

Abstract

Non-homologous end joining (NHEJ), as one major pathway of DNA double-strand break (DSB) repair, could cause genomic instability, which plays pivotal roles in cancer development. While, chromatin remodeling complexes dictate the selection and orchestration of DSB repair pathways by regulating chromatin dynamics. However, the crosstalk between NHEJ and chromatin remodeling in cancer progress remains unclear. In this study, deficiency of GLTSCR1 causes resistance to DNA damage in colorectal cancer (CRC) cells by promoting NHEJ repair efficiency. Mechanistically, GLTSCR1 interacts with BRD9 to engage in the assembly of the non-canonical BAF complex (GBAF). However, GLTSCR1 deficiency disrupts GBAF and triggers the ubiquitination degradation of BRD9. Furthermore, GLTSCR1 deficiency causes aberrant opening in the promoter region of NHEJ repair-associated genes, which promotes CRC development. While, GLTSCR1 and its binding partner BRD9 are not directly involved in assembling NHEJ repair machinery; instead, they regulate the DNA accessibility of NHEJ repair-associated genes. Collectively, our findings confirm GLTSCR1 deficiency as a critical regulatory event of the NHEJ pathway in CRC development, which might require different therapeutic strategy for GLTSCR1 wild-type and mutant CRC.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: GLTSCR1 deficiency resistance to DNA damage.
Fig. 2: GLTSCR1 deficiency promotes NHEJ repair efficiency.
Fig. 3: GLTSCR1 regulates NHEJ through participating in a unique SWI/SNF subcomplex.
Fig. 4: GLTSCR1 regulates the protein stability of BRD9.
Fig. 5: BB domain of GLTSCR1 binds to BRD9 and trans-locates BRD9 into the nucleus.
Fig. 6: BRD9 is required for NHEJ activity.
Fig. 7: GLTSCR1 regulates NHEJ depends on BRD9.
Fig. 8: Loss of GLTSCR1 promotes CRC development through upregulating the NHEJ pathway.

Similar content being viewed by others

Data availability

The data generated in this study are available within the article and its supplementary information files. The raw data of the ATAC-seq and RNA-seq data is available in SRA: PRJNA1099778.

References

  1. Centore RC, Sandoval GJ, Soares LMM, Kadoch C, Chan HM. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 2020;36:936–50.

    Article  CAS  PubMed  Google Scholar 

  2. Clapier CR, Cairns BR. The biology of chromatin remodeling complexes. Annu Rev Biochem. 2009;78:273–304.

    Article  CAS  PubMed  Google Scholar 

  3. Clapier CR, Iwasa J, Cairns BR, Peterson CL. Mechanisms of action and regulation of ATP-dependent chromatin-remodelling complexes. Nat Rev Mol Cell Biol. 2017;18:407–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bieluszewski T, Prakash S, Roule T, Wagner D. The role and activity of SWI/SNF chromatin remodelers. Annu Rev Plant Biol. 2023;74:139–63.

    Article  CAS  PubMed  Google Scholar 

  5. Zaret KS. Pioneer transcription factors initiating gene network changes. Annu Rev Genet. 2020;54:367–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tsai S, Fournier LA, Chang EY, Wells JP, Minaker SW, Zhu YD, et al. ARID1A regulates R-loop associated DNA replication stress. PLoS Genet. 2021;17:e1009238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kadoch C, Crabtree GR. Mammalian SWI/SNF chromatin remodeling complexes and cancer: mechanistic insights gained from human genomics. Sci Adv. 2015;1:e1500447.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Gatchalian J, Malik S, Ho J, Lee DS, Kelso TWR, Shokhirev MN, et al. A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nat Commun. 2018;9:5139.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Alpsoy A, Dykhuizen EC. Glioma tumor suppressor candidate region gene 1 (GLTSCR1) and its paralog GLTSCR1-like form SWI/SNF chromatin remodeling subcomplexes. J Biol Chem. 2018;293:3892–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Helming KC, Wang X, Roberts CWM. Vulnerabilities of mutant SWI/SNF complexes in cancer. Cancer Cell. 2014;26:309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Han F, Zhang L, Chen C, Wang Y, Zhang Y, Qian L, et al. GLTSCR1 negatively regulates BRD4-dependent transcription elongation and inhibits CRC metastasis. Adv Sci (Weinh). 2019;6:1901114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Han F, Yang B, Zhou M, Huang Q, Mai M, Huang Z, et al. GLTSCR1 coordinates alternative splicing and transcription elongation of ZO1 to regulate colorectal cancer progression. J Mol Cell Biol. 2022;14:mjac009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Perkhofer L, Gout J, Roger E, Kude de Almeida F, Baptista Simoes C, Wiesmuller L, et al. DNA damage repair as a target in pancreatic cancer: state-of-the-art and future perspectives. Gut. 2021;70:606–17.

    Article  CAS  PubMed  Google Scholar 

  14. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability-an evolving hallmark of cancer. Nat Rev Mol Cell Biol. 2010;11:220–8.

    Article  CAS  PubMed  Google Scholar 

  15. Roberts NJ, Norris AL, Petersen GM, Bondy ML, Brand R, Gallinger S, et al. Whole genome sequencing defines the genetic heterogeneity of familial pancreatic cancer. Cancer Discov. 2016;6:166–75.

    Article  CAS  PubMed  Google Scholar 

  16. Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20:698–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Stinson BM, Loparo JJ. Repair of DNA double-strand breaks by the nonhomologous end joining pathway. Annu Rev Biochem. 2021;90:137–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang M, Chen G, Tu B, Hu Z, Huang Y, DuFort CC, et al. SMYD2 inhibition-mediated hypomethylation of Ku70 contributes to impaired nonhomologous end joining repair and antitumor immunity. Sci Adv. 2023;9:eade6624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo J, Chen JW, Zhou J, Han K, Li S, Duan JL, et al. TBX20 inhibits colorectal cancer tumorigenesis by impairing NHEJ-mediated DNA repair. Cancer Sci. 2022;113:2008–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Patterson-Fortin J, Bose A, Tsai WC, Grochala C, Nguyen H, Zhou J, et al. Targeting DNA repair with combined inhibition of NHEJ and MMEJ induces synthetic lethality in TP53-mutant cancers. Cancer Res. 2022;82:3815–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bilbao C, Ramirez R, Rodriguez G, Falcon O, Leon L, Diaz-Chico N, et al. Double strand break repair components are frequent targets of microsatellite instability in endometrial cancer. Eur J Cancer. 2010;46:2821–7.

    Article  CAS  PubMed  Google Scholar 

  22. Li ZW, Zhao JM, Tang Y. Advances in the role of SWI/SNF complexes in tumours. J Cell Mol Med. 2023;27:1023–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen FX, Xie P, Collings CK, Cao K, Aoi Y, Marshall SA, et al. PAF1 regulation of promoter-proximal pause release via enhancer activation. Science. 2017;357:1294–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Vazquez-Arreguin K, Bensard C, Schell JC, Swanson E, Chen X, Rutter J, et al. Oct1/Pou2f1 is selectively required for colon regeneration and regulates colon malignancy. PLoS Genet. 2019;15:e1007687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mashtalir N, Suzuki H, Farrell DP, Sankar A, Luo J, Filipovski M, et al. A structural model of the endogenous human BAF complex informs disease mechanisms. Cell. 2020;183:802–17.e24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kelso TWR, Porter DK, Amaral ML, Shokhirev MN, Benner C, Hargreaves DC. Chromatin accessibility underlies synthetic lethality of SWI/SNF subunits in ARID1A-mutant cancers. Elife. 2017;6:e30506.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Arnoult N, Correia A, Ma J, Merlo A, Garcia-Gomez S, Maric M, et al. Regulation of DNA repair pathway choice in S and G2 phases by the NHEJ inhibitor CYREN. Nature. 2017;549:548–52.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yaeger R, Chatila WK, Lipsyc MD, Hechtman JF, Cercek A, Sanchez-Vega F, et al. Clinical sequencing defines the genomic landscape of metastatic colorectal cancer. Cancer Cell. 2018;33:125–36.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin SH, Raju GS, Huff C, Ye Y, Gu J, Chen JS, et al. The somatic mutation landscape of premalignant colorectal adenoma. Gut. 2018;67:1299–305.

    Article  CAS  PubMed  Google Scholar 

  30. Michel BC, D’Avino AR, Cassel SH, Mashtalir N, McKenzie ZM, McBride MJ, et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat Cell Biol. 2018;20:1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Aizawa H, Hu SC, Bobb K, Balakrishnan K, Ince G, Gurevich I, et al. Dendrite development regulated by CREST, a calcium-regulated transcriptional activator. Science. 2004;303:197–202.

    Article  CAS  PubMed  Google Scholar 

  32. Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron. 2007;55:201–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mashtalir N, Dao HT, Sankar A, Liu H, Corin AJ, Bagert JD, et al. Chromatin landscape signals differentially dictate the activities of mSWI/SNF family complexes. Science. 2021;373:306–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rim EY, Clevers H, Nusse R. The Wnt pathway: from signaling mechanisms to synthetic modulators. Annu Rev Biochem. 2022;91:571–98.

    Article  CAS  PubMed  Google Scholar 

  35. Vasileiou G, Ekici AB, Uebe S, Zweier C, Hoyer J, Engels H, et al. Chromatin-remodeling-factor ARID1B represses Wnt/beta-catenin signaling. Am J Hum Genet. 2015;97:445–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wischhof L, Lee HM, Tutas J, Overkott C, Tedt E, Stork M, et al. BCL7A-containing SWI/SNF/BAF complexes modulate mitochondrial bioenergetics during neural progenitor differentiation. EMBO J. 2022;41:e110595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Roukos V, Voss TC, Schmidt CK, Lee S, Wangsa D, Misteli T. Spatial dynamics of chromosome translocations in living cells. Science. 2013;341:660–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haber JE. A life investigating pathways that repair broken chromosomes. Annu Rev Genet. 2016;50:1–28.

    Article  CAS  PubMed  Google Scholar 

  39. Makharashvili N, Paull TT. CtIP: A DNA damage response protein at the intersection of DNA metabolism. DNA Repair. 2015;32:75–81.

    Article  CAS  PubMed  Google Scholar 

  40. Lord CJ, Ashworth A. BRCAness revisited. Nat Rev Cancer. 2016;16:110–20.

    Article  CAS  PubMed  Google Scholar 

  41. Ashworth A, Lord CJ. Synthetic lethal therapies for cancer: what’s next after PARP inhibitors? Nat Rev Clin Oncol. 2018;15:564–76.

    Article  CAS  PubMed  Google Scholar 

  42. Wu JN, Roberts CWM. Mutations in cancer: another epigenetic tumor suppressor? Cancer Discov. 2013;3:35–43.

    Article  CAS  PubMed  Google Scholar 

  43. Watanabe R, Ui A, Kanno S, Ogiwara H, Nagase T, Kohno T, et al. SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability. Cancer Res. 2014;74:2465–75.

    Article  CAS  PubMed  Google Scholar 

  44. Zhou Q, Huang J, Zhang C, Zhao F, Kim W, Tu X, et al. The bromodomain containing protein BRD-9 orchestrates RAD51-RAD54 complex formation and regulates homologous recombination-mediated repair. Nat Commun. 2020;11:2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Qiong Huang from the core facility platform of Zhejiang University School of Medicine for technical support. We thank the Laboratory Animal Center of Zhejiang University for technical assistance with management of mice.

Funding

This work was supported by National Natural Science Foundation of China (grants 81871937, 82472952 and 82173223), the CAMS Innovation Fund for Medical Sciences (CIFMS, grant number 2019-I2M-5-044) and the Guangdong Basic and Applied Basic Research Foundation (grant number 2023A1515140182).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, HZ, FH, EX and ZT; methodology, FH, XZ, and LL; investigation, BY, PL and LL; writing—original draft, FH, XZ; writing—review & editing, HZ, FH, EX and ZT; funding acquisition, HZ and FH; resources, HZ and FH; Supervision, HZ and FH and all authors have approved the final version of the manuscript.

Corresponding authors

Correspondence to Fengyan Han, Enping Xu, Zhe Tang or Honghe Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods in this study were performed in accordance with the Declaration of Helsinki and its subsequent revisions. Colorectal carcinoma samples from patients in this study were collected from the Run Run Shaw Hospital, Zhejiang University. All participating patients were informed. The study was approved by the Ethic Committee of Zhejiang University, school of Medicine (Approval number: 2018‐018) and informed consent was obtained from every participant.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, F., Zhou, X., Liu, L. et al. GLTSCR1 deficiency promotes colorectal cancer development through regulating non-homologous end joining. Oncogene 43, 3517–3531 (2024). https://doi.org/10.1038/s41388-024-03179-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03179-x

Search

Quick links