Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

NSUN2 regulates Wnt signaling pathway depending on the m5C RNA modification to promote the progression of hepatocellular carcinoma

Abstract

5-Methylcytosine (m5C) RNA modification is a highly abundant and important epigenetic modification in mammals. As an important RNA m5C methyltransferase, NOP2/Sun-domain family member 2 (NSUN2)-mediated m5C RNA modification plays an important role in the regulation of the biological functions in many cancers. However, little is known about the biological role of NSUN2 in hepatocellular carcinoma (HCC). In this study, we found that the expression of NSUN2 was significantly upregulated in HCC, and the HCC patients with higher expression of NSUN2 had a poorer prognosis than those with lower expression of NSUN2. NSUN2 could affect the tumor immune regulation of HCC in several ways. In vitro and in vivo experiments confirmed that NSUN2 knockdown significantly decreased the abilities of proliferation, colony formation, migration and invasion of HCC cells. The methylated RNA immunoprecipitation-sequencing (MeRIP-seq) showed NSUN2 knockdown significantly affected the abundance, distribution, and composition of m5C RNA modification in HCC cells. Functional enrichment analyses and in vitro experiments suggested that NSUN2 could promote the HCC cells to proliferate, migrate and invade by regulating Wnt signaling pathway. SARS2 were identified via the RNA immunoprecipitation-sequencing (RIP-Seq) and MeRIP-seq as downstream target of NSUN2, which may play an important role in tumor-promoting effect of NSUN2-mediated m5C RNA modification in HCC. In conclusion, NSUN2 promotes HCC progression by regulating Wnt signaling pathway and SARS2 in an m5C-dependent manner.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The general features of NSUN2 in HCC based on the TCGA database.
Fig. 2: NSUN2 knockdown inhibits HCC cell proliferation, migration and invasion.
Fig. 3: NSUN2 knockdown inhibits HCC xenograft growth.
Fig. 4: Overview of the landscape of NSUN2-mediated m5C mRNA modification in Huh7 cell.
Fig. 5: The joint analysis of modification levels and transcriptomes in mRNA in HCC.
Fig. 6: NSUN2 knockdown inhibits Wnt signaling pathway in HCC.
Fig. 7: NSUN2 knockdown inhibits HCC progression through Wnt signaling pathway.
Fig. 8: RIP-seq data analysis of HCC after NSUN2 knockdown.

Similar content being viewed by others

Data availability

All data related to this study can be obtained from the corresponding authors upon reasonable request. The m5C MeRIP-seq data are available in GEO database (ID: GSE228973), the single cell transcriptome sequencing data are available in GSE149614 from GEO database, and other RNA-seq data are available in TCGA database (TCGA-LIHC).

References

  1. Freddie B, Mathieu L, Hyuna S, Jacques F, Rebecca LS, Isabelle S, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74:229–63.

    Article  Google Scholar 

  2. Amit GS, Masatoshi K, Jordi B. Breakthroughs in hepatocellular carcinoma therapies. Clin Gastroenterol Hepatol. 2023;21:2135–49.

    Article  Google Scholar 

  3. Craig AJ, von Felden J, Garcia-Lezana T, Sarcognato S, Villanueva A. Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2019;17:139–52.

    Article  PubMed  Google Scholar 

  4. Josep ML, Robin Kate K, Augusto V, Amit GS, Eli P, Sasan R, et al. Hepatocellular carcinoma. Nat Rev Dis Prim. 2021;7:6.

    Article  Google Scholar 

  5. Lehrich BM, Zhang J, Monga SP, Dhanasekaran R. Battle of the biopsies: role of tissue and liquid biopsy in hepatocellular carcinoma. J Hepatol. 2023;80:515–30.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Edward AM, Caroline RD, Feng-Chun Y. ASXL1/2 mutations and myeloid malignancies. J Hematol Oncol. 2022;15:127.

    Article  Google Scholar 

  7. Xiaoxuan W, Yuheng H, Shen M, Wenchen G, Tianyuan R, Tingting Z, et al. A novel immune-related epigenetic signature based on the transcriptome for predicting the prognosis and therapeutic response of patients with diffuse large B-cell lymphoma. Clin Immunol. 2022;243:109105.

    Article  Google Scholar 

  8. Yu Y, Diguang W, Lu Z, Jiao L, Xiao X, Yucheng C, et al. ALKBH5/MAP3K8 axis regulates PD-L1+ macrophage infiltration and promotes hepatocellular carcinoma progression. Int J Biol Sci. 2022;18:5001–18.

    Article  Google Scholar 

  9. Weifeng Y, Xue H, Mian G, Chaojin C, Xue X, Haobo L, et al. N(6)-methyladenosine (m(6)A) methylation in ischemia-reperfusion injury. Cell Death Dis. 2020;11:478.

    Article  Google Scholar 

  10. Huanxiang C, Hongyang L, Chenxing Z, Nan X, Yang L, Xiangzhuan Z, et al. RNA methylation-related inhibitors: Biological basis and therapeutic potential for cancer therapy. Clin Transl Med. 2024;14:e1644.

    Article  Google Scholar 

  11. Chen X, Qingfei C, Qiuxian Z, Shiman J, Zhengyi B, Yuanshuai S, et al. Role of main RNA modifications in cancer: N(6)-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct Target Ther. 2022;7:142.

    Article  Google Scholar 

  12. Zhao BS, Roundtree IA, He C. Post-transcriptional gene regulation by mRNA modifications. Nat Rev Mol Cell Biol. 2016;18:31–42.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guo G, Pan K, Fang S, Ye L, Tong X, Wang Z, et al. Advances in mRNA 5-methylcytosine modifications: detection, effectors, biological functions, and clinical relevance. Mol Ther Nucleic Acids. 2021;26:575–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: current status and future perspectives. Int J Biol Macromol. 2023;253:126773.

    Article  CAS  PubMed  Google Scholar 

  15. Cheng M, You X, Ding J, Dai Y, Chen M, Yuan B, et al. Novel dual methylation of cytidines in the RNA of mammals. Chem Sci. 2021;12:8149–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pan J, Huang Z, Xu Y. m5C-Related lncRNAs predict overall survival of patients and regulate the tumor immune microenvironment in lung adenocarcinoma. Front Cell Dev Biol. 2021;9:671821.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zou S, Huang Y, Yang Z, Zhang J, Meng M, Zhang Y, et al. NSUN2 promotes colorectal cancer progression by enhancing SKIL mRNA stabilization. Clin Transl Med. 2024;14:e1621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Y, Chen X, Zhang H, Wen J, Gao H, Shi B, et al. CDK13 promotes lipid deposition and prostate cancer progression by stimulating NSUN5-mediated m5C modification of ACC1 mRNA. Cell Death Differ. 2023;30:2462–76.

    Article  CAS  PubMed  Google Scholar 

  19. Zhu W, Wan F, Xu W, Liu Z, Wang J, Zhang H, et al. Positive epigenetic regulation loop between AR and NSUN2 promotes prostate cancer progression. Clin Transl Med. 2022;12:e1028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen S, Chen K, Ding L, Yu C, Wu H, Chou Y, et al. RNA bisulfite sequencing reveals NSUN2-mediated suppression of epithelial differentiation in pancreatic cancer. Oncogene. 2022;41:3162–76.

    Article  CAS  PubMed  Google Scholar 

  21. Wu R, Sun C, Chen X, Yang R, Luan Y, Zhao X, et al. NSUN5/TET2-directed chromatin-associated RNA modification of 5-methylcytosine to 5-hydroxymethylcytosine governs glioma immune evasion. Proc Natl Acad Sci USA. 2024;121:e2321611121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao Y, Wang Z, Zhu Y, Zhu Q, Yang Y, Jin Y, et al. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma. Cancer Sci. 2019;110:3510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhen S, Shonglei X, Hui X, Xuming H, Shihao C, Zhe Y, et al. Expression profiles of long noncoding RNAs associated with the NSUN2 gene in HepG2 cells. Mol Med Rep. 2019;19:2999–3008.

    Google Scholar 

  24. Min Y, Renxiong W, Sheng Z, Sang H, Xiaoxiao L, Zhiqiang Y, et al. NSUN2 promotes osteosarcoma progression by enhancing the stability of FABP5 mRNA via m(5)C methylation. Cell Death Dis. 2023;14:125.

    Article  Google Scholar 

  25. Ning W, Ri-Xin C, Min-Hua D, Wen-Su W, Zhao-Hui Z, Kang N, et al. m(5)C-dependent cross-regulation between nuclear reader ALYREF and writer NSUN2 promotes urothelial bladder cancer malignancy through facilitating RABL6/TK1 mRNAs splicing and stabilization. Cell Death Dis. 2023;14:139.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yueqin W, Jingyao W, Luyao F, Ouwen L, Lan H, Shaoxuan Z, et al. Aberrant m5C hypermethylation mediates intrinsic resistance to gefitinib through NSUN2/YBX1/QSOX1 axis in EGFR-mutant non-small-cell lung cancer. Mol Cancer. 2023;22:81.

    Article  Google Scholar 

  27. Ying L, Yiwen X, Tianlu J, Zetian C, Yikai S, Jie L, et al. Long noncoding RNA DIAPH2-AS1 promotes neural invasion of gastric cancer via stabilizing NSUN2 to enhance the m5C modification of NTN1. Cell Death Dis. 2023;14:260.

    Article  Google Scholar 

  28. Shuai-Jun C, Jun Z, Ting Z, Shan-Shan R, Qian L, Ling-Yan X, et al. Epigenetically upregulated NSUN2 confers ferroptosis resistance in endometrial cancer via m(5)C modification of SLC7A11 mRNA. Redox Biol. 2023;69:102975.

    Google Scholar 

  29. Peng L, Wenlong W, Ruixin Z, Ying D, Xinying L. The m(5) C methyltransferase NSUN2 promotes codon-dependent oncogenic translation by stabilising tRNA in anaplastic thyroid cancer. Clin Transl Med. 2023;13:e1466.

    Article  Google Scholar 

  30. Xuhui T, Rong T, Mingming X, Jin X, Wei W, Bo Z, et al. Targeting cell death pathways for cancer therapy: recent developments in necroptosis, pyroptosis, ferroptosis, and cuproptosis research. J Hematol Oncol. 2022;15:174.

    Article  Google Scholar 

  31. Anna G-M, Malgorzata C. WNT/β-catenin signaling in hepatocellular carcinoma: The aberrant activation, pathogenic roles, and therapeutic opportunities. Genes Dis. 2023;11:727–46.

    Google Scholar 

  32. Chen X, Qinfan Y, Xinyu G, Qingmiao S, Xin Y, Qingfei C, et al. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther. 2023;8:204.

    Article  Google Scholar 

  33. Zou G, Park J. Wnt signaling in liver regeneration, disease, and cancer. Clin Mol Hepatol. 2023;29:33–50.

    Article  PubMed  Google Scholar 

  34. Nusse R, Clevers H. Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell. 2017;169:985–99.

    Article  CAS  PubMed  Google Scholar 

  35. Shah K, Panchal S, Patel B. Porcupine inhibitors: Novel and emerging anti-cancer therapeutics targeting the Wnt signaling pathway. Pharmacol Res. 2021;167:105532.

    Article  CAS  PubMed  Google Scholar 

  36. Hoernes TP, Clementi N, Faserl K, Glasner H, Breuker K, Lindner H, et al. Nucleotide modifications within bacterial messenger RNAs regulate their translation and are able to rewire the genetic code. Nucleic Acids Res. 2015;44:852–62.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shobbir H. The emerging roles of Cytosine-5 methylation in mRNAs. Trends Genet. 2021;37:498–500.

    Article  Google Scholar 

  38. Saori N, Takeo S, Layla K, Hiroyoshi I, Kana A, Tsutomu S. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nat Chem Biol. 2016;12:546–51.

    Article  Google Scholar 

  39. Mayumi O, Mamoru F, Masato H, Kaoru O, Futoshi Y, Hiroaki K, et al. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet. 2014;10:e1004639.

    Article  Google Scholar 

  40. Jianheng L, Tao H, Yusen Z, Tianxuan Z, Xueni Z, Wanying C, et al. Sequence- and structure-selective mRNA m(5)C methylation by NSUN6 in animals. Natl Sci Rev. 2021;8:nwaa273.

    Article  Google Scholar 

  41. Xiaotian Z, Zhenyun L, Jie Y, Hao T, Junyue X, Minqwei Y, et al. The tRNA methyltransferase NSun2 stabilizes p16INK4 mRNA by methylating the 3’-untranslated region of p16. Nat Commun. 2012;3:712.

    Article  Google Scholar 

  42. Hu Y, Chen C, Tong X, Chen S, Hu X, Pan B, et al. NSUN2 modified by SUMO-2/3 promotes gastric cancer progression and regulates mRNA m5C methylation. Cell Death Dis. 2021;12:842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen L, Ding J, Wang B, Chen X, Ying X, Yu Z, et al. RNA methyltransferase NSUN2 promotes hypopharyngeal squamous cell carcinoma proliferation and migration by enhancing TEAD1 expression in an mC-dependent manner. Exp Cell Res. 2021;404:112664.

    Article  CAS  PubMed  Google Scholar 

  44. Chen S, Zhang J, Zhou T, Rao S, Li Q, Xiao L, et al. Epigenetically upregulated NSUN2 confers ferroptosis resistance in endometrial cancer via mC modification of SLC7A11 mRNA. Redox Biol. 2024;69:102975.

    Article  CAS  PubMed  Google Scholar 

  45. Liangliang X, Chang Z, Shanshan Z, Timothy Shun Man C, Yan Z, Weiwei C, et al. Reshaping the systemic tumor immune environment (STIE) and tumor immune microenvironment (TIME) to enhance immunotherapy efficacy in solid tumors. J Hematol Oncol. 2022;15:87.

    Article  Google Scholar 

  46. Benjamin R, Matthias B, Sepideh B, Noemi K, Lichun M, Mahler R, et al. Tumor-associated macrophages trigger MAIT cell dysfunction at the HCC invasive margin. Cell. 2023;186:3686–3705.e3632.

    Article  Google Scholar 

  47. Mikhail B, Edward WR, Kelly K, Vincent C, Douglas FF, Miriam M, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.

    Article  Google Scholar 

  48. de Visser KE, Joyce JA. The evolving tumor microenvironment: From cancer initiation to metastatic outgrowth. Cancer Cell. 2023;41:374–403.

    Article  PubMed  Google Scholar 

  49. Qingqing Q, Ying Z, Jintao G, Qinwei C, Weiwei T, Yuchen L, et al. Conserved methylation signatures associate with the tumor immune microenvironment and immunotherapy response. Genome Med. 2024;16:47.

    Article  Google Scholar 

  50. Feng-Ming T, Hsuan-Hsuan L, Shu-Yung L, Hsing-Chen T. Epigenetic remodeling of the immune landscape in cancer: therapeutic hurdles and opportunities. J Biomed Sci. 2023;30:3.

    Article  Google Scholar 

  51. Zaoqu L, Haijiao Z, Qin D, Hui X, Long L, Yuyuan Z, et al. Biological and pharmacological roles of m(6)A modifications in cancer drug resistance. Mol Cancer. 2022;21:220.

    Article  Google Scholar 

  52. Ganglei L, Qinfan Y, Peixi L, Hongfei Z, Yingjun L, Sichen L, et al. Critical roles and clinical perspectives of RNA methylation in cancer. MedComm (2020). 2024;5:e559.

    Google Scholar 

  53. Magen A, Hamon P, Fiaschi N, Soong B, Park M, Mattiuz R, et al. Intratumoral dendritic cell-CD4 T helper cell niches enable CD8 T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat Med. 2023;29:1389–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lai I, Swaminathan S, Baylot V, Mosley A, Dhanasekaran R, Gabay M, et al. Lipid nanoparticles that deliver IL-12 messenger RNA suppress tumorigenesis in MYC oncogene-driven hepatocellular carcinoma. J Immunother cancer. 2018;6:125.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Aghayev T, Mazitova A, Fang J, Peshkova I, Rausch M, Hung M, et al. IL27 signaling serves as an immunologic checkpoint for innate cytotoxic cells to promote hepatocellular carcinoma. Cancer Discov. 2022;12:1960–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang R, Wang Z, Hong J, Wu J, Huang O, He J, et al. Targeting cancer-associated adipocyte-derived CXCL8 inhibits triple-negative breast cancer progression and enhances the efficacy of anti-PD-1 immunotherapy. Cell Death Dis. 2023;14:703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Feng D, Xiaoyang Q, Baofeng W, Qian L, Jinyang H, Xuan C, et al. ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Res. 2021;81:5876–88.

    Article  Google Scholar 

  58. Hosein A, Dangol G, Okumura T, Roszik J, Rajapakshe K, Siemann M, et al. Loss of Rnf43 Accelerates Kras-Mediated Neoplasia and Remodels the Tumor Immune Microenvironment in Pancreatic Adenocarcinoma. Gastroenterology. 2022;162:1303–18.e1318.

    Article  CAS  PubMed  Google Scholar 

  59. Yuqiu X, Zhuang W, Mei F, Dexiang Z, Shenglin M, Zhongen W, et al. Tumor-infiltrated activated B cells suppress liver metastasis of colorectal cancers. Cell Rep. 2022;40:111295.

    Article  Google Scholar 

  60. Biasci D, Smoragiewicz M, Connell CM, Wang Z, Gao Y, Thaventhiran JED, et al. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. Proc Natl Acad Sci USA. 2020;117:28960–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Peng DH, Rodriguez BL, Diao L, Chen L, Wang J, Byers LA, et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8(+) T cell exhaustion. Nat Commun. 2020;11:4520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Qiuyao W, Pu T, Dasa H, Zhenchang J, Yunfei H, Wenqian L, et al. SCUBE2 mediates bone metastasis of luminal breast cancer by modulating immune-suppressive osteoblastic niches. Cell Res. 2023;33:464–78.

    Article  Google Scholar 

  63. Horn LA, Chariou PL, Gameiro SR, Qin H, Iida M, Fousek K, et al. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1-mediated tumor eradication. J Clin Investig. 2022;132:e155148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Qingyu D, Shunhao Z, Haotian Z, Jing S, Jing L, Guihua W, et al. MARCO is a potential prognostic and immunotherapy biomarker. Int Immunopharmacol. 2023;116:109783.

    Article  Google Scholar 

  65. Thapa B, Kato S, Nishizaki D, Miyashita H, Lee S, Nesline MK, et al. OX40/OX40 ligand and its role in precision immune oncology. Cancer Metastasis Rev. 2024;43:1001–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Charlotte L, Maud K, Sophie V, Walid C, Anne S, Claire M, et al. Immune gene expression in head and neck squamous cell carcinoma patients. Eur J Cancer. 2019;121:210–23.

    Article  Google Scholar 

  67. Jiaqi L, Qing X, Jiani X, Chenxi N, Yuanyuan L, Xiaojun Z, et al. Wnt/β-catenin signalling: function, biological mechanisms, and therapeutic opportunities. Signal Transduct Target Ther. 2022;7:3.

    Article  Google Scholar 

  68. Wenqiang Z, Kexin Z, Yanhui M, Yixin S, Tongbing Q, Guoji X, et al. Secreted frizzled-related proteins: A promising therapeutic target for cancer therapy through Wnt signaling inhibition. Biomed Pharmacother. 2023;166:115344.

    Article  Google Scholar 

  69. Yu M, Qin K, Fan J, Zhao G, Zhao P, Zeng W, et al. The evolving roles of Wnt signaling in stem cell proliferation and differentiation, the development of human diseases, and therapeutic opportunities. Genes Dis. 2024;11:101026.

    Article  CAS  PubMed  Google Scholar 

  70. Perugorria M, Olaizola P, Labiano I, Esparza-Baquer A, Marzioni M, Marin J, et al. Wnt-β-catenin signalling in liver development, health and disease. Nat Rev Gastroenterol Hepatol. 2019;16:121–36.

    Article  CAS  PubMed  Google Scholar 

  71. Xiang D, Gu M, Liu J, Dong W, Yang Z, Wang K, et al. m6A RNA methylation-mediated upregulation of HLF promotes intrahepatic cholangiocarcinoma progression by regulating the FZD4/β-catenin signaling pathway. Cancer Lett. 2023;560:216144.

    Article  CAS  PubMed  Google Scholar 

  72. Mohamad HS, Wenli S. Survey on multi-omics, and multi-omics data analysis, integration and application. Curr Pharm Anal. 2023;19:267–81.

    Article  Google Scholar 

  73. Lu Y, Yang A, Quan C, Pan Y, Zhang H, Li Y, et al. A single-cell atlas of the multicellular ecosystem of primary and metastatic hepatocellular carcinoma. Nat Commun. 2022;13:4594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Yoshihara K, Shahmoradgoli M, Martínez E, Vegesna R, Kim H, Torres-Garcia W, et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat Commun. 2013;4:2612.

    Article  PubMed  Google Scholar 

  75. Chen B, Khodadoust M, Liu C, Newman A, Alizadeh A. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol. 2018;1711:243–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fu J, Li K, Zhang W, Wan C, Zhang J, Jiang P, et al. Large-scale public data reuse to model immunotherapy response and resistance. Genome Med. 2020;12:21.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Anton S, Tingting J, Giampaolo B, Balázs G, Thomas K, Christos H, et al. Immune gene expression is associated with genomic aberrations in breast cancer. Cancer Res. 2017;77:3317–24.

    Article  Google Scholar 

  78. Beibei R, Ching Ngar W, Yin T, Jia Yi Z, Sophia Shek Wa Z, Wai Chung W, et al. TISIDB: an integrated repository portal for tumor-immune system interactions. Bioinformatics. 2019;35:4200–2.

    Article  Google Scholar 

  79. Fromowitz FB, Viola MV, Chao S, Oravez S, Mishriki Y, Finkel G, et al. ras p21 expression in the progression of breast cancer. Hum Pathol. 1987;18:1268–75.

    Article  CAS  PubMed  Google Scholar 

  80. Lichinchi G, Gao S, Saletore Y, Gonzalez G, Bansal V, Wang Y, et al. Dynamics of the human and viral m(6)A RNA methylomes during HIV-1 infection of T cells. Nat Microbiol. 2016;1:16011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Andrey K, Uljana B, Alexander K, Maxim F. cutPrimers: a new tool for accurate cutting of primers from reads of targeted next generation sequencing. J Comput Biol. 2017;24:1138–43.

    Article  Google Scholar 

  82. Daehwan K, Joseph MP, Chanhee P, Christopher B, Steven LS. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37:907–15.

    Article  Google Scholar 

  83. Heng L, Bob H, Alec W, Tim F, Jue R, Nils H, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  Google Scholar 

  84. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008;9:R137.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Li S, Ning-Yi S, Xiaochuan L, Ian M, Jian F, Eric JN. diffReps: detecting differential chromatin modification sites from ChIP-seq data with biological replicates. PLoS ONE. 2013;8:e65598.

    Article  Google Scholar 

  87. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2014;31:166–9.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Chi S, Zang J, Mele A, Darnell R. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature. 2009;460:479–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heinz S, Benner C, Spann N, Bertolino E, Lin Y, Laslo P, et al. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010;38:576–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (2023M743200 and 2024T170826), the Postdoctoral Fellowship Program of CPSF (GZC20232425), the Science and Technology Research Program of Henan Province (242102311163), the Henan Medical Science and Technology Joint Building Program (LHGJ20230160), and the Henan Sunshine Medical Health Development Foundation iGanDan Project (HKP2023001 and HKP2023006).

Author information

Authors and Affiliations

Authors

Contributions

CX and YH conceptualized and supervised this study, HX and XG participated in the overall experiments and wrote the draft. YL prepared figures. LX collected and analyzed data. All authors contributed to the article and approved the submitted version.

Corresponding authors

Correspondence to Yuting He or Chen Xue.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

All methods used in this study were performed in accordance with the relevant guidelines and regulations. All animal experiments in this study were carried out in accordance with the regulations of Experimental Animal Use and Welfare Committee of Zhengzhou University (approval number: ZZU-LAC2024060416).

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Gu, X., Liu, Y. et al. NSUN2 regulates Wnt signaling pathway depending on the m5C RNA modification to promote the progression of hepatocellular carcinoma. Oncogene 43, 3469–3482 (2024). https://doi.org/10.1038/s41388-024-03184-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41388-024-03184-0

This article is cited by

Search

Quick links